phosphate coatings
Recently Published Documents


TOTAL DOCUMENTS

697
(FIVE YEARS 107)

H-INDEX

54
(FIVE YEARS 8)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Evgeniy Rumyantsev ◽  
Varvara Rumyantseva ◽  
Viktoriya Konovalova

The article presents a method for obtaining white phosphate coatings on steel by cold method. The deposition of protective phosphate coatings was carried out from solutions based on the preparation “Majef”, consisting of manganese and iron phosphates. To obtain phosphate films of white color, it is proposed to introduce zinc and calcium nitrates into phosphating solutions at the rate of 25–30 g/L. The surface of phosphate coatings was studied using the SolverP47-PRO atomic force microscope images, and the average grain size was determined. The structural and phase composition of phosphate coatings was been studied using X-ray diffraction analysis. The protective properties of phosphate coatings were estimated by corrosion rate indicators calculated from corrosion diagrams. Fine-crystalline uniform coatings were obtained from modified phosphating solutions at room temperature on steel. The white color of phosphate coatings is due to the increased content of phosphophyllite, hopeite, and parascholzite in their structural and phase composition. By applying protective phosphate coatings of white color on a steel product, corrosion can be slowed down by 4–4.5 times. However, white phosphate coatings are inferior in protective properties to unpainted coatings. The index of change in the mass of samples with white phosphate coatings because of corrosion is 0.371–0.41 g/(m2·h), and with unpainted coatings is 0.128 g/(m2·h).


2022 ◽  
Author(s):  
V.S. Konovalova

Abstract. The possibility of obtaining luminous phosphate coatings on steel by cold method has been studied. Modified cold phosphating solutions containing organic additives (glycerin, trilon B, OS-20 emulsifier) were selected as the basis to maintain the pH, stabilize the solution and improve the quality and structure of the deposited coatings. To obtain the glow effect, a green phosphor based on Zn2SiO4 containing manganese as a sensitizer was added to the phosphating solution. During deposition, phosphate coatings are obtained that glow with spots, but constant mixing of the solution during deposition contributes to the uniform distribution of phosphor in the phosphate film. Luminous phosphate coatings have good protective properties, they can be used as an independent protection of steel surfaces from corrosion.


Author(s):  
Валентина Константиновна Крутько ◽  
Анна Евгеньевна Дорошенко ◽  
Ольга Николаевна Мусская ◽  
Сергей Михайлович Рабчинский ◽  
Анатолий Иосифович Кулак

Методом электрохимического осаждения на титановых пластинах при комнатной температуре в двухэлектродной ячейке при постоянной плотности тока 30 мА/см и времени осаждения 10 мин получены кальцийфосфатные покрытия: брушитные в системе Ca (NO )/ NH H PO при pH = 4 и композитные (брушит/кальцит/апатит) в системе CaCOjCa (HPO ) при pH = 5. Выдерживанием кальцийфосфатных покрытий обоих типов в модельном растворе SBF в течение 1 месяца определяли апатитообразующую способность (биоактивность). Новообразованный аморфизированный апатитовый слой после термообработки при 800°С кристаллизовался в Д -трикальцийфосфат/гидроксиапатит на брушитных покрытиях и в гидроксиапатит на композитных покрытиях за счет присутствия кальцита, карбонат-ионы которого являются инициаторами образования гидроксиапатита, а также апатитных наночастиц в исходном покрытии. Полученные кальцийфосфатные покрытия перспективны в качестве биопокрытий повышающих остеоинтеграцию металлических имплантатов. Calcium phosphate coatings on titanium plates were obtained by electrochemical deposition at room temperature in a two-electrode cell at a constant current density of 30 mA/sm and a deposition time of 10 min, and brushite coatings from Ca (NO )/NHHPO system at pH = 4, and composite (brushite/calcite/apatite) coatings from the CaCO/ Ca(HPO) system at pH = 5. The apatite-forming ability (bioactivity) was determined by soaking both types of calcium phosphate coatings in a model SBF solution during month. The newly formed amorphized apatite layer after heat treatment at 800 °С crystallized into p -tricalcium phosphate/hydroxyapatite on brushite coatings and hydroxyapatite on composite coatings due to the presence of calcite, whose carbonate ions initiate formation of hydroxyapatite, as well as apatite nanoparticles in the initial coating. The obtained calcium phosphate coatings are promising as biocoatings capable to increase osseointegration of metal implants.


2021 ◽  
Author(s):  
Zhengchao Xi ◽  
Jianbo Sun ◽  
Lei Chen ◽  
Haixia Cui ◽  
Yanjun Ma ◽  
...  

Abstract Natural serpentine powders were incorporated into phosphate bonded solid coatings to promote the anti-wear performance of the phosphate coatings. Optimal mass percent of natural serpentine in phosphate coatings was firstly explored. Thereafter, in order to stimulate layer slip of natural serpentine and strengthen interfacial interaction between natural serpentine and counterface during the friction process, tribological performance of the composite coatings under different friction condition was properly investigated. The experimental result indicated that the optimal incorporation of natural serpentine in phosphate coatings was 10 wt.%, through which anti-wear performance of phosphate coatings was significantly elevated. Additionally, accompanied by the increase of applied load and sliding speed, natural serpentine was activated by friction force and local friction heat, and simultaneously interfacial interactions between naturals serpentine and counterface were intensified. As a result, a continuous protective tribo-film was in-situ formed on the counterface, through which anti-wear performance of phosphate coatings were significantly promoted. At the same time, serious furrows generated on the counterface were also effectively self-repaired during the friction process, and further abrasion on the counterface was greatly restrained.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042027
Author(s):  
V Rumyantseva ◽  
V Konovalova ◽  
B Narmaniya

Abstract The deposition of phosphate coatings occurs on the surface of the product when it is immersed in a solution containing phosphoric acid. The formation of a film on the metal surface occurs during the deposition of insoluble two- and three-substituted phosphates of iron, manganese, and zinc from a solution. To speed up the process and conduct phosphating at low temperatures, nitrates, nitrites, and fluorides of active metals are introduced into the solution. Organic compounds, such as glucose, glycerin, Trilon A, and Trilon B, are buffer additives to maintain the pH of phosphating solutions in the range of 2.6-3.2. It was found that 10-15 minutes at a process temperature of 20-25 °C are sufficient for the formation of a protective phosphate coating from solutions containing modifiers. The content of zinc phosphates in the modified phosphate coatings is increased. Additives in cold phosphating solutions have a positive effect on the quality and protective properties of the resulting phosphate films. Modified phosphate coatings obtained by the cold method have a fine-crystalline structure, a smooth surface and low porosity.


2021 ◽  
Vol Volume 16 ◽  
pp. 8265-8277
Author(s):  
Kai Fang ◽  
Yiding Shen ◽  
Kendrick Hii Ru Yie ◽  
Zixin Zhou ◽  
Lei Cai ◽  
...  

2021 ◽  
Vol 2064 (1) ◽  
pp. 012057
Author(s):  
E A Kazantseva ◽  
E G Komarova

Abstract The effect of the magnitude of the US (ultrasound) power applied during the MAO (micro arc oxidation) process on the morphology, elemental and phase composition of the CaP coatings was studied. The US at different power (50-200 W) applying during the MAO process led to the local destruction of the structure elements (spheres and pores) and local filling the pore spaces on the coating surface, and to the formation of local macro-pores inside the coatings near the substrate. Such morphological transformations led to the surface and structure heterogeneity of the coatings, increasing of the surface roughness from 3.0 to 4.5 μm and of the thickness from 50 to 60 μm. The US application at different power did not affect significantly the elemental composition of the coatings. At the same time, under applied US with power more than 100 W, the state of the coatings transformed from X-ray amorphous to the quasiamorphous with the small incorporation of crystalline phases of CaHPO4 and β-Ca2P2O7.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012077
Author(s):  
E G Komarova ◽  
E A Kazantseva ◽  
V S Ripenko ◽  
A Zharin ◽  
Y P Sharkeev

Abstract The studies of the effect of ultraviolet (UV) irradiation and plasma of a runaway electron preionized diffuse discharge (REP DD) post-treatments on the surface structure and electrical charge of the micro-arc oxidation (MAO) coatings were performed. The UV irradiation and plasma treatment did not effect on the morphology, roughness and thickness of the MAO coatings. However, these post-treatments led to formation of the small fraction of the crystalline CaHPO4phase in the X-ray amorphous structure of the coatings. Moreover, the UV and REP DD plasma treatments increased the electrostatic potential (EP) negative values from –85 mV to –126 mV of the coatings in the following order: MAO < MAO/UV (for 5 min) < MAO/Plasma (with 10,000 pulses) < MAO/UV (for 20 min) < MAO/Plasma (with 80,000 pulses).


Sign in / Sign up

Export Citation Format

Share Document