titanium substrates
Recently Published Documents


TOTAL DOCUMENTS

399
(FIVE YEARS 64)

H-INDEX

41
(FIVE YEARS 6)

2021 ◽  
pp. 112944
Author(s):  
Yuta Nakashima ◽  
Mami Akaike ◽  
Masaki Kounoura ◽  
Keita Hayashi ◽  
Kinichi Morita ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1226
Author(s):  
Pham Trung Kien ◽  
Tran Ngo Quan ◽  
Le Huynh Tuyet Anh

Medical pure titanium (Ti) shows excellent chemical stability and mechanical properties in clinical uses, but its initial fixation with host bone, when implanted, is usually delayed owing to the bioinert Ti surface. In this study, we fabricate the hydroxyapatite (HA)-coated titanium by three steps reactions: (1) to form an activated O2− layer by immersing Ti substrate into an alkaline solution such as NaOH; (2) the O2− bonds with Ca2+ to form Ca–O–Ti bonding, in which O plays the part of bridge materials between Ca and Ti substrate and (3) the conversion of Ca–O–Ti samples to HA-coated Ti samples by immersion into Na2HPO4 2 M at 180 °C for 48 h using hydrothermal methods. The effect of different phosphate solutions (NaH2PO4 2 M and Na2HPO4 2 M solution) and hydrothermal treatment time (24 and 48 h) on the characteristic of hydroxyapatite coating titanium substrate is also investigated using the optical microscope, thin film XRD and SEM/EDX. The HA-coated Ti samples fabricated by immersion into Na2HPO4 2 M at 180 °C for 48 h show fiber HA covering Titan substrate with a diameter varying from 0.1 to 0.3 µm. These HA-coated Ti samples can be regarded as promising multifunctional biomaterials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2634
Author(s):  
Giovanna Calabrese ◽  
Domenico Franco ◽  
Salvatore Petralia ◽  
Francesca Monforte ◽  
Guglielmo Guido Condorelli ◽  
...  

Implantable biomaterials play a key role for the success of orthopedic surgery procedures. However, infections remain one of the most damaging post-operative complications that lead to the implant failure. Recently, several approaches have been proposed to avoid or manage implant-associated infections. Among these, an appropriate surface functionalization to confer intrinsic antibacterial properties preserving the osteo-integration ability represents an appealing strategy for the development of innovative implant materials. Titanium and its alloys are the most used materials for manufacturing of both articular and bone skull prostheses as well as dental implants. However, to date there is still a significant clinical need to improve their bioactivity, osseointegration and antibacterial activity. In this study, titanium biomimetic scaffolds are prepared by nano-functionalization with TiO2 (Ti_TiO2) and γFe2O3 (Ti_γFe2O3). Both cytocompatibility and antibacterial activity have been evaluated. Data show that both nano-functionalized scaffolds exhibit a good antibacterial activity towards Staphylococcus aureus, reducing colony number to 99.4% (Ti_TiO2) and 99.9% (Ti_γFe2O3), respectively. In addition, an increase of both human adipose-derived mesenchymal stem cells (hADSCs) cell proliferation (up to 4.3-fold for Ti_TiO2 and 3.7-fold for Ti_gFe2O3) and differentiation has been observed. These data suggest that these nano-functionalized titanium substrates represent promising prototypes for new antimicrobial and osteoconductive biomaterials to be used in the orthopedic field to reconstruct significant bone defect.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1120
Author(s):  
Łukasz Pawłowski ◽  
Michał Bartmański ◽  
Aleksandra Mielewczyk-Gryń ◽  
Andrzej Zieliński

The preparation of the metal surface before coating application is fundamental in determining the properties of the coatings, particularly the roughness, adhesion, and corrosion resistance. In this work, chitosan/Eudragit E 100 (chit/EE100) were fabricated by electrophoretic deposition (EPD) and both their microstructure and properties were investigated. The present research is aimed at characterizing the effects of the surface pretreatment of titanium substrate, applied deposition voltage, and time on physical, mechanical, and electrochemical properties of coatings. The coating’s microstructure, topography, thickness, wettability, adhesion, and corrosion behavior were examined. The applied process parameters influenced the morphology of the coatings, which affected their properties. Coatings with the best properties, i.e., uniformity, proper thickness and roughness, hydrophilicity, highest adhesion to the substrate, and corrosion resistance, were obtained after deposition of chit/EE100 coating on nanotubular oxide layers produced by previous electrochemical oxidation.


2021 ◽  
Vol 5 ◽  
pp. 100121
Author(s):  
M. Aliofkhazraei ◽  
D.D. Macdonald ◽  
E. Matykina ◽  
E.V. Parfenov ◽  
V.S. Egorkin ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 812
Author(s):  
Han Gao ◽  
Meijie Yu ◽  
Xin Chen ◽  
Guiyong Xiao ◽  
Chuanzhong Chen ◽  
...  

Induction heating treatment (IHT) has recently been used to improve the bioactivity and biocompatibility of titanium and its alloys, greatly related to the formation of the nanoscale oxide coating. In this work, the effect of ultrasonic on the IHT oxidation behavior of pure titanium has been investigated. Ultrasonic-assisted IHT of pure titanium was carried out for 13, 20 and 25 s. Submicro-/nano-scale morphological coatings with rutile and anatase TiO2 were prepared on the surface of titanium substrates subjected to ultrasonic-assisted IHT. In particular, the TiO2 crystals were significantly refined by ultrasonic impact. An improvement in hydrophilicity and hardness of the oxide film was achieved by ultrasonic-assisted IHT. The refinement of TiO2 crystals is suggested to be caused by ultrasonic induced changes of energy, defect density and their correlation with diffusion of oxygen. The present study provides a potential method to refine the nanoscale oxide films on titanium substrates, which is promising for improving the wear resistance and bioactivity of titanium and its alloys.


Sign in / Sign up

Export Citation Format

Share Document