Osteogenic and angiogenic lineage differentiated adipose‐derived stem cells for bone regeneration of calvarial defects in rabbits

Author(s):  
Zhifa Wang ◽  
Leng Han ◽  
Tianyu Sun ◽  
Weijian Wang ◽  
Xiao Li ◽  
...  
2020 ◽  
Vol 15 (4) ◽  
pp. 1535-1549
Author(s):  
Arturas Stumbras ◽  
Povilas Kuliesius ◽  
Adas Darinskas ◽  
Ricardas Kubilius ◽  
Vilma Zigmantaite ◽  
...  

Aim: The aim of this study was to evaluate the osteogenic potential of adipose-derived stem cells (ADSCs) and to assess the influence of plasma rich in growth factors (PRGF) on bone regeneration using ADSCs. Materials & methods: Bone defects were randomly allocated to the five treatment modalities: spontaneous healing, natural bovine bone mineral (BBM), BBM loaded with PRGF, BBM loaded with ADSCs and BBM loaded with a combination of ADSCs and PRGF. Results: The PRGF significantly enhanced the biomaterial-to-bone contact. Defects treated with ADSCs and PRGF or a combination of both showed the greatest bone regeneration. Conclusion: Combining PRGF and ADSCs boosts the bone graft regenerative potential at the earliest period of healing.


Skull Base ◽  
2005 ◽  
Vol 15 (S 2) ◽  
Author(s):  
Stefan Lendeckel ◽  
A. Jödicke ◽  
P. Christophis ◽  
K. Heidinger ◽  
H.-P. Howaldt

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weigang Li ◽  
Wenbin Liu ◽  
Wei Wang ◽  
Jiachen Wang ◽  
Tian Ma ◽  
...  

Abstract Background The repair of critical-sized bone defects is always a challenging problem. Electromagnetic fields (EMFs), used as a physiotherapy for bone defects, have been suspected to cause potential hazards to human health due to the long-term exposure. To optimize the application of EMF while avoiding its adverse effects, a combination of EMF and tissue engineering techniques is critical. Furthermore, a deeper understanding of the mechanism of action of EMF will lead to better applications in the future. Methods In this research, bone marrow mesenchymal stem cells (BMSCs) seeded on 3D-printed scaffolds were treated with sinusoidal EMFs in vitro. Then, 5.5 mm critical-sized calvarial defects were created in rats, and the cell scaffolds were implanted into the defects. In addition, the molecular and cellular mechanisms by which EMFs regulate BMSCs were explored with various approaches to gain deeper insight into the effects of EMFs. Results The cell scaffolds treated with EMF successfully accelerated the repair of critical-sized calvarial defects. Further studies revealed that EMF could not directly induce the differentiation of BMSCs but improved the sensitivity of BMSCs to BMP signals by upregulating the quantity of specific BMP (bone morphogenetic protein) receptors. Once these receptors receive BMP signals from the surrounding milieu, a cascade of reactions is initiated to promote osteogenic differentiation via the BMP/Smad signalling pathway. Moreover, the cytokines secreted by BMSCs treated with EMF can better facilitate angiogenesis and osteoimmunomodulation which play fundamental roles in bone regeneration. Conclusion In summary, EMF can promote the osteogenic potential of BMSCs and enhance the paracrine function of BMSCs to facilitate bone regeneration. These findings highlight the profound impact of EMF on tissue engineering and provide a new strategy for the clinical treatment of bone defects.


2015 ◽  
Vol 21 (5-6) ◽  
pp. 895-905 ◽  
Author(s):  
Satoshi Tajima ◽  
Morikuni Tobita ◽  
Hakan Orbay ◽  
Hiko Hyakusoku ◽  
Hiroshi Mizuno

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Ricardo A. Torres-Guzman ◽  
Maria T. Huayllani ◽  
Francisco R. Avila ◽  
Karla Maita ◽  
Abba C. Zubair ◽  
...  

2022 ◽  
pp. 347-370
Author(s):  
Harsh N. Shah ◽  
Abra H. Shen ◽  
Sandeep Adem ◽  
Ankit Salhotra ◽  
Michael T. Longaker ◽  
...  

2013 ◽  
Vol 25 (1) ◽  
pp. 288 ◽  
Author(s):  
A. C. M. Ercolin ◽  
M. Mkrtschjan ◽  
M. Bionaz ◽  
T. Jensen ◽  
M. B. Wheeler

In our laboratory, we extensively study the possibility of using adipose-derived stem cells (ASC) for maxillofacial bone regeneration. This includes also the tissue repair of large critical-size osteotomies requiring the use of tridimensional scaffolds. Bone regeneration in scaffolds can be greatly enhanced by the use of specific growth factors such as BMP2. In the present study, we compared the activity of commercially available human BMP2 (hBMP2) with in house-produced porcine BMP2 (pBMP2). The latter was synthesised using the BMP2 coding sequence from mRNA obtained from porcine ASC cell cultures. The coding sequence of the mature protein was cloned into a pET-21 plasmid and produced in E. coli as inclusion bodies. The activity of pBMP2 and hBMP2 was tested on ASC isolated from male pigs at passage 4 and at approximately 80% confluence in 48-well plates. Cells were treated in triplicate with hBMP2 or pBMP2 at 0.5, 5, 50, 500, or 1000 ng mL–1, adipogenic medium (AM), osteogenic medium (OM), or normal DMEM medium supplemented with acetic acid (used to resuspend BMP2 as the control) for 5 or 17 days. Cells were harvested for Alizarin Red S (AR) quantification and expression of osteogenic genes. For the AR analysis, cells were fixed with formalin and treated with AR. The AR was then extracted by acetic acid and neutralized with ammonium hydroxide before spectrophotometer reading at an absorbance of 420 nm. Data were analysed using GLM of SAS (SAS Institute Inc., Cary, NC, USA) with treatment, time, concentration, and all interactions as main effects. Using an inverted robotic stage microscope, images of the entire well for each replicate were taken every 2 to 3 days. Images revealed formation of osteogenic nodules in OM and characteristic large cells filled with lipid droplets in AM. No evident nodule formation was observed in the other treated cells at any time point. The AR was higher than control in both hBMP2 and pBMP2 at 0.5, 50, and 1000 ng mL–1 but not at 5 and 500 ng mL–1. There was no overall difference between hBMP2 and pBMP2 but the former had the highest AR value at 5 days in cells treated with 0.5 ng mL–1 and pBMP2 at 17 days with 1000 ng mL–1. Interestingly, both had higher values compared to OM, particularly at 5 days. We also observed an increase of AR due to time in cells treated with acetic acid (control). Overall, the data appear to indicate an increase in calcium accumulation in cells treated with both hBMP2 and pBMP2, with an early increase in the former and a late and larger increase in the latter. This might indicate a larger but slower activity of pBMP2 compared with hBMP2. The lack of formation of osteogenic nodules by both BMP2 might indicate an insufficiency of BMP2 to induce osteogenesis in porcine ASC. This last observation, together with the lack of increased AR accumulation compared with control at the 5 and 50 ng mL–1 doses, suggests the need for a more accurate analysis of BMP2 activity by measuring expression of BMP2-related genes. Finally, the data provide preliminary support for the equivalency of activity of pBMP2 and hBMP2 for in vivo bone regeneration.


Sign in / Sign up

Export Citation Format

Share Document