Biological characterization of dehydrated amniotic membrane allograft: Mechanisms of action and implications for wound care

2020 ◽  
Vol 108 (8) ◽  
pp. 3076-3083
Author(s):  
Marc C. Moore ◽  
Paul P. Bonvallet ◽  
Sita M. Damaraju ◽  
Heli N. Modi ◽  
Ankur Gandhi ◽  
...  
Author(s):  
Meghan A. May ◽  
Daniel R. Brown

Members of the genus Mycoplasma and related organisms impose a substantial burden of infectious diseases on humans and animals, but the last comprehensive review of mycoplasmal pathogenicity was published 20 years ago. Post-genomic analyses have now begun to support the discovery and detailed molecular biological characterization of a number of specific mycoplasmal virulence factors. This review covers three categories of defined mycoplasmal virulence effectors: 1) specific macromolecules including the superantigen MAM, the ADP-ribosylating CARDS toxin, sialidase, cytotoxic nucleases, cell-activating diacylated lipopeptides, and phosphocholine-containing glycoglycerolipids; 2) the small molecule effectors hydrogen peroxide, hydrogen sulfide, and ammonia; and 3) several putative mycoplasmal orthologs of virulence effectors documented in other bacteria.  Understanding such effectors and their mechanisms of action at the molecular level connects the biology of the bacteria to direct effects on the host and host responses they elicit, and is expected to translate into new interventions for human and veterinary mycoplasmosis.


2006 ◽  
Vol 50 (4) ◽  
pp. 1228-1237 ◽  
Author(s):  
Nagraj Mani ◽  
Christian H. Gross ◽  
Jonathan D. Parsons ◽  
Brian Hanzelka ◽  
Ute Müh ◽  
...  

ABSTRACT Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities.


2021 ◽  
Vol 298 ◽  
pp. 198397
Author(s):  
François J. Maclot ◽  
Virginie Debue ◽  
Arnaud G. Blouin ◽  
Núria Fontdevila Pareta ◽  
Lucie Tamisier ◽  
...  

3 Biotech ◽  
2021 ◽  
Vol 11 (8) ◽  
Author(s):  
Nagamani Sandra ◽  
Ankita Tripathi ◽  
S. K. Lal ◽  
Bikash Mandal ◽  
Rakesh Kumar Jain

2021 ◽  
pp. 104972
Author(s):  
Hebah A. Al Khatib ◽  
Peter V. Coyle ◽  
Muna A. Al Maslamani ◽  
Asmaa A. Al Thani ◽  
Sameer A. Pathan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document