Efficient implementation of periodic boundary conditions in Monte Carlo simulation

2018 ◽  
Vol 40 (5) ◽  
pp. 734-739
Author(s):  
Dzmitry V. Shakhno ◽  
Aleh V. Shakhno ◽  
Eugene Paulechka
1998 ◽  
Vol 09 (06) ◽  
pp. 881-886 ◽  
Author(s):  
Andres R. R. Papa

We show that for two-dimensional square Ising systems unphysical frozen states are obtained by just changing the instant of application of periodic boundary conditions during Monte Carlo simulations. The strange behavior is observed up to sample sizes currently used in literature. The anomalous results appear to be associated to the simultaneous use of type writer updating algorithms; they disappear when random access routines are implemented.


1978 ◽  
Vol 31 (5) ◽  
pp. 933 ◽  
Author(s):  
JE Lane ◽  
TH Spurling

A grand ensemble Monte Carlo procedure is used to examine the thermodynamic properties of a crystal-like layer of krypton adsorbed at sub-monolayer coverages on graphite at 90.12 K. The effect of the periodic boundary conditions on these properties is discussed and used to develop a thermodynamically consistent iterative procedure to estimate the transition pressure and thereby fix the adsorption isotherm.


1996 ◽  
Vol 07 (06) ◽  
pp. 873-881 ◽  
Author(s):  
NIELS GRØNBECH-JENSEN

We present a set of expressions for evaluating energies and forces between particles interacting logarithmically in a finite two-dimensional system with periodic boundary conditions. The formalism can be used for fast and accurate, dynamical or Monte Carlo, simulations of interacting line charges or interactions between point and line charges. The expressions are shown to converge to usual computer accuracy (~10–16) by adding only few terms in a single sum of standard trigonometric functions.


2019 ◽  
Author(s):  
Pier Paolo Poier ◽  
Louis Lagardere ◽  
Jean-Philip Piquemal ◽  
Frank Jensen

<div> <div> <div> <p>We extend the framework for polarizable force fields to include the case where the electrostatic multipoles are not determined by a variational minimization of the electrostatic energy. Such models formally require that the polarization response is calculated for all possible geometrical perturbations in order to obtain the energy gradient required for performing molecular dynamics simulations. </p><div> <div> <div> <p>By making use of a Lagrange formalism, however, this computational demanding task can be re- placed by solving a single equation similar to that for determining the electrostatic variables themselves. Using the recently proposed bond capacity model that describes molecular polarization at the charge-only level, we show that the energy gradient for non-variational energy models with periodic boundary conditions can be calculated with a computational effort similar to that for variational polarization models. The possibility of separating the equation for calculating the electrostatic variables from the energy expression depending on these variables without a large computational penalty provides flexibility in the design of new force fields. </p><div><div><div> </div> </div> </div> <p> </p><div> <div> <div> <p>variables themselves. Using the recently proposed bond capacity model that describes molecular polarization at the charge-only level, we show that the energy gradient for non-variational energy models with periodic boundary conditions can be calculated with a computational effort similar to that for variational polarization models. The possibility of separating the equation for calculating the electrostatic variables from the energy expression depending on these variables without a large computational penalty provides flexibility in the design of new force fields. </p> </div> </div> </div> </div> </div> </div> </div> </div> </div>


Author(s):  
Robert Stegliński

AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$ Δ ( Δ u ( k - 1 ) p - 2 Δ u ( k - 1 ) ) + a ( k ) u ( k ) p - 2 u ( k ) = 0 with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document