Ab initio evidence for the stepwise mechanism of the McLafferty rearrangement of the butanal radical cation

1992 ◽  
Vol 13 (2) ◽  
pp. 183-186 ◽  
Author(s):  
Ruifeng Liu ◽  
Peter Pulay
2002 ◽  
Vol 67 (10) ◽  
pp. 1517-1532 ◽  
Author(s):  
William R. Dolbier ◽  
Keith W. Palmer ◽  
Feng Tian ◽  
Piotr Fiedorow ◽  
Andrzej Zaganiaczyk ◽  
...  

Fluorine atoms incorporated into 1,5-hexadiene molecule should influence the kinetic as well as the thermodynamic parameters of [3,3] sigmatropic rearrangement (Cope rearrangement). Within few decades is has been documented that this transformation proceeds in a concerted manner, rather than stepwise with some radical intermediates involved. Few new terminally fluorinated 1,5-hexadienes (compounds 3, 5A, 7, 9 and 5B) have been synthesized. The activation parameters of rearrangement have been determined and compared with those known for hydrocarbon analogues. While systems developing chair-like transition states (compounds 3 and 5) showed close similarity with hydrocarbon analogues (compound 1), those developing boat-like transition states (compounds 7, 9 and 5B) may proceed through radical stepwise mechanism. Computational studies of the transition states were carried out, showing that only ab initio methods (MP2 and especially DFT) can give approximate correlation with experimental data, whereas in the case of hydrocarbon analogues even simple semiempirical methods (AM1) were reliable enough to reproduce experimental results.


1991 ◽  
Vol 69 (9) ◽  
pp. 1365-1375 ◽  
Author(s):  
Xinyao Du ◽  
Donald R. Arnold ◽  
Russell J. Boyd ◽  
Zheng Shi

Carbon–carbon bond cleavage of the radical cations of 1-butene [Formula: see text] and 4,4-dimethyl-1-pentene [Formula: see text] will generate the allyl and alkyl radical and carbocation fragments. Alternative bonding arrangements between the allyl and methyl moieties in [Formula: see text] and between the allyl and tert-butyl moieties in [Formula: see text] possible metastable intermediates or transition states preceding complete separation of the fragments, have been investigated by ab initio molecular orbital calculations. Structures were fully optimized at the UHF/6-31G* or UHF/STO-3G levels, and some of the calculations on [Formula: see text] were expanded with single point MP2/6-31G*//UHF/6-31G* computations. The C4H8+ radical cation, having a structure similar to that of 1-butene, is more stable than the separated fragments: 183 kj mol−1 lower in energy than the sum of the energies of the allyl cation and the methyl radical, and 385 kJ mol−1 lower than the sum of the energies of an allyl radical and a methyl cation, at the MP2/6-31G* level. The corresponding values at the UHF/STO-3G level are 276 and 415 kj mol−1, respectively. There is less bonding interaction between the allyl and tert-butyl moieties in [Formula: see text] The summation of the energies of the allyl radical and tert-butyl cation is 123 kj mol−1 lower than the summation of the energies of the allyl cation and tert-butyl radical, and 115 kJ mol−1 higher in energy than the bonded radical cation [Formula: see text] at the UHF/STO-3G level. These calculated values are compared with thermochemical data and with experimental results on the cleavage of these, and related, radical cations. Key words: radical cation, cleavage, ab initio calculations, electron transfer, photochemistry.


ChemInform ◽  
2010 ◽  
Vol 25 (15) ◽  
pp. no-no
Author(s):  
S. EKERN ◽  
A. ILLIES ◽  
M. L. MCKEE ◽  
M. PESCHKE

1999 ◽  
Vol 121 (28) ◽  
pp. 6730-6736 ◽  
Author(s):  
Udo Haberl ◽  
Olaf Wiest ◽  
Eberhard Steckhan

Sign in / Sign up

Export Citation Format

Share Document