Catalysis of Multi-walled Carbon Nanotubes Supported PdxCoyNanoparticles Prepared by a Pyrolysis Method Using Ionic Liquids as the Solvent toward Ethanol Oxidation Reaction

2013 ◽  
Vol 60 (9) ◽  
pp. 1135-1143 ◽  
Author(s):  
Hongwei Yang ◽  
Yahui Wang ◽  
Yanli Cao ◽  
Chunbao Zheng ◽  
Lu Liu ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (75) ◽  
pp. 61298-61308 ◽  
Author(s):  
S. Jongsomjit ◽  
K. Sombatmankhong ◽  
P. Prapainainar

The reduction method was used to prepare catalysts on carbon black (CB), functionalised carbon black (CBsn), multi-walled carbon nanotubes (MWCNTs) and functionalised MWCNTs (MWCNTsn) to improve the catalytic activity for ethanol oxidation reaction.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1099 ◽  
Author(s):  
Qiuping Li

Ionogels refer to an emerging composite material made from the confinement of ionic liquids within some specific cross-linked network matrices. They have potential applications in areas such as electrochemical and optical-electric materials. Incorporation of lanthanide (Eu3+, Tb3+) complexes covalently functionalized multi-walled carbon nanotubes (MWCNTs) in ionogels provide new ideas to design and synthesize novel luminescent hybrid materials that have excellent characteristics of luminescence and ionic conductivity. Here, the multifunctional ionogels were synthesized by confining an ionic liquid and the rare earth functionalized MWCNTs in the cross-linked polymethyl methacrylate (PMMA) networks, resulting in a novel optical/electric multifunctional hybrid material. The SEM images and digital photographs suggest that the lanthanide functionalized MWCNTs are evenly dispersed in the hybrid matrices, thus leading to a certain transparency bulky gel. The resulting ionogels exhibit certain viscosity and flexibility, and display an intense red/green emission under UV-light irradiation. The intrinsic conductibility of the embedded ionic liquids and carbon nanotubes in conjunction with the outstanding photoluminescent properties of lanthanide complexes makes the soft hybrid gels a material with great potential and valuable application in the field of optical-electric materials.


2017 ◽  
Vol 5 (36) ◽  
pp. 19467-19475 ◽  
Author(s):  
Jing-Jing Fan ◽  
You-Jun Fan ◽  
Rui-Xiang Wang ◽  
Sheng Xiang ◽  
Hua-Guo Tang ◽  
...  

Sulfur-doped multi-walled carbon nanotubes (S-MWCNTs) derived from PEDOT-functionalized MWCNTs can significantly improve the dispersion of supported Pt nanoparticles and enhance their electrocatalytic performance for the MOR.


Sign in / Sign up

Export Citation Format

Share Document