Formation of salinity maximum water and its contribution to the overturning circulation in the North Atlantic as revealed by a global general circulation model

2013 ◽  
Vol 118 (4) ◽  
pp. 1982-1994 ◽  
Author(s):  
Tangdong Qu ◽  
Shan Gao ◽  
Ichiro Fukumori
2005 ◽  
Vol 18 (24) ◽  
pp. 5382-5389 ◽  
Author(s):  
Jürgen Bader ◽  
Mojib Latif

Abstract The dominant pattern of atmospheric variability in the North Atlantic sector is the North Atlantic Oscillation (NAO). Since the 1970s the NAO has been well characterized by a trend toward its positive phase. Recent atmospheric general circulation model studies have linked this trend to a progressive warming of the Indian Ocean. Unfortunately, a clear mechanism responsible for the change of the NAO could not be given. This study provides further details of the NAO response to Indian Ocean sea surface temperature (SST) anomalies. This is done by conducting experiments with a coupled ocean–atmosphere general circulation model (OAGCM). The authors develop a hypothesis of how the Indian Ocean impacts the NAO.


2013 ◽  
Vol 26 (2) ◽  
pp. 380-398 ◽  
Author(s):  
Jan-Huey Chen ◽  
Shian-Jiann Lin

Abstract Retrospective seasonal predictions of tropical cyclones (TCs) in the three major ocean basins of the Northern Hemisphere are performed from 1990 to 2010 using the Geophysical Fluid Dynamics Laboratory High-Resolution Atmospheric Model (HiRAM) at 25-km resolution. Atmospheric states are initialized for each forecast, with the sea surface temperature anomaly (SSTA) “persisted” from that at the starting time during the 5-month forecast period (July–November). Using a five-member ensemble, it is shown that the storm counts of both tropical storm (TS) and hurricane categories are highly predictable in the North Atlantic basin during the 21-yr period. The correlations between the 21-yr observed and model predicted storm counts are 0.88 and 0.89 for hurricanes and TSs, respectively. The prediction in the eastern North Pacific is skillful, but it is not as outstanding as that in the North Atlantic. The persistent SSTA assumption appears to be less robust for the western North Pacific, contributing to less skillful predictions in that region. The relative skill in the prediction of storm counts is shown to be consistent with the quality of the predicted large-scale environment in the three major basins. It is shown that intensity distribution of TCs can be captured well by the model if the central sea level pressure is used as the threshold variable instead of the commonly used 10-m wind speed. This demonstrates the feasibility of using the 25-km-resolution HiRAM, a general circulation model designed initially for long-term climate simulations, to study the impacts of climate change on the intensity distribution of TCs.


Sign in / Sign up

Export Citation Format

Share Document