scholarly journals Classic and new mediators for in vitro modelling of human macrophages

Author(s):  
Rosario Luque‐Martin ◽  
Palwinder K. Mander ◽  
Pieter J. M. Leenen ◽  
Menno P. J. Winther
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pierre Santucci ◽  
Daniel J. Greenwood ◽  
Antony Fearns ◽  
Kai Chen ◽  
Haibo Jiang ◽  
...  

AbstractTo be effective, chemotherapy against tuberculosis (TB) must kill the intracellular population of the pathogen, Mycobacterium tuberculosis. However, how host cell microenvironments affect antibiotic accumulation and efficacy remains unclear. Here, we use correlative light, electron, and ion microscopy to investigate how various microenvironments within human macrophages affect the activity of pyrazinamide (PZA), a key antibiotic against TB. We show that PZA accumulates heterogeneously among individual bacteria in multiple host cell environments. Crucially, PZA accumulation and efficacy is maximal within acidified phagosomes. Bedaquiline, another antibiotic commonly used in combined TB therapy, enhances PZA accumulation via a host cell-mediated mechanism. Thus, intracellular localisation and specific microenvironments affect PZA accumulation and efficacy. Our results may explain the potent in vivo efficacy of PZA, compared to its modest in vitro activity, and its critical contribution to TB combination chemotherapy.


2016 ◽  
Vol 60 (4) ◽  
pp. 2052-2062 ◽  
Author(s):  
Ky V. Hoang ◽  
Heather Curry ◽  
Michael A. Collier ◽  
Hassan Borteh ◽  
Eric M. Bachelder ◽  
...  

ABSTRACTFrancisella tularensiscauses tularemia and is a potential biothreat. Given the limited antibiotics for treating tularemia and the possible use of antibiotic-resistant strains as a biowarfare agent, new antibacterial agents are needed. AR-12 is an FDA-approved investigational new drug (IND) compound that induces autophagy and has shown host-directed, broad-spectrum activityin vitroagainstSalmonella entericaserovar Typhimurium andF. tularensis. We have shown that AR-12 encapsulated within acetalated dextran (Ace-DEX) microparticles (AR-12/MPs) significantly reduces host cell cytotoxicity compared to that with free AR-12, while retaining the ability to controlS.Typhimurium within infected human macrophages. In the present study, the toxicity and efficacy of AR-12/MPs in controlling virulent type AF. tularensisSchuS4 infection were examinedin vitroandin vivo. No significant toxicity of blank MPs or AR-12/MPs was observed in lung histology sections when the formulations were given intranasally to uninfected mice. In histology sections from the lungs of intranasally infected mice treated with the formulations, increased macrophage infiltration was observed for AR-12/MPs, with or without suboptimal gentamicin treatment, but not for blank MPs, soluble AR-12, or suboptimal gentamicin alone. AR-12/MPs dramatically reduced the burden ofF. tularensisin infected human macrophages, in a manner similar to that of free AR-12. However,in vivo, AR-12/MPs significantly enhanced the survival ofF. tularensisSchuS4-infected mice compared to that seen with free AR-12. In combination with suboptimal gentamicin treatment, AR-12/MPs further improved the survival ofF. tularensisSchuS4-infected mice. These studies provide support for Ace-DEX-encapsulated AR-12 as a promising new therapeutic agent for tularemia.


2020 ◽  
Vol 118 (3) ◽  
pp. 463a
Author(s):  
Giulia Borile ◽  
Giulia Borella ◽  
Camille Charoy ◽  
Andrea Filippi ◽  
Filippo Romanato ◽  
...  

2015 ◽  
Vol 100 (1) ◽  
pp. E50-E58 ◽  
Author(s):  
Alice Toniolo ◽  
Gian Paolo Fadini ◽  
Serena Tedesco ◽  
Roberta Cappellari ◽  
Elisabetta Vegeto ◽  
...  

1992 ◽  
Vol 20 (1) ◽  
pp. 43S-43S
Author(s):  
W. ROGER RUSH ◽  
JANICE H. MULVEY ◽  
DOUGLAS J.M. GRAHAM
Keyword(s):  

2013 ◽  
Vol 4 ◽  
Author(s):  
Italiani Paola ◽  
Mazza Emilia Maria Cristina ◽  
Bicciato Silvio ◽  
Gemelli Claudia ◽  
Grande Alexis ◽  
...  

1983 ◽  
Vol 24 (2) ◽  
pp. 233-236 ◽  
Author(s):  
J D Berman ◽  
L S Lee ◽  
R K Robins ◽  
G R Revankar

2009 ◽  
Vol 1283 ◽  
pp. 148-154 ◽  
Author(s):  
Rosa María Tolón ◽  
Estefanía Núñez ◽  
María Ruth Pazos ◽  
Cristina Benito ◽  
Ana Isabel Castillo ◽  
...  

2006 ◽  
Vol 75 (4) ◽  
pp. 1619-1625 ◽  
Author(s):  
Jeffrey Fischer ◽  
Jeffrey West ◽  
Nnenaya Agochukwu ◽  
Colby Suire ◽  
Hollie Hale-Donze

ABSTRACT Microsporidians are a group of emerging pathogens typically associated with chronic diarrhea in immunocompromised individuals. The number of reports of infections with these organisms and the disseminated pathology is growing as diagnostic tools become more readily available. However, little is known about the innate immune response induced by and generated against these parasites. Using a coculture chemotaxis system, primary human macrophages were infected with Encephalitozoon cuniculi or Encephalitozoon intestinalis, and the recruitment of naïve monocytes was monitored. Encephalitozoon spp. induced an average threefold increase in migration of naïve cells 48 h postinfection, which corresponded to optimal infection of monocyte-derived-macrophages. A limited microarray analysis of infected macrophages revealed several chemokines involved in the inflammatory responses whose expression was upregulated, including CCL1, CCL2, CCL3, CCL4, CCL7, CCL15, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, and CXCL8. The levels of 6 of 11 chemokines also present in the microarray were confirmed to be elevated by protein profiling. Kinetic studies confirmed that secreted CCL2, CCL3, and CCL4 were expressed as early as 6 h postinfection, with peak expression at 12 to 24 h and expression remaining until 48 h postinfection. Neutralization of these chemokines, specifically CCL4, significantly reduced the number of migrating cells in vitro, indicating their role in the induction of monocyte migration. This mechanism of recruitment not only supports the evidence that in vivo cellular infiltration occurs but also provides new hosts for the parasites, which escape macrophages by rupturing the host cell. To our knowledge, this is the first documentation that chemokine production is induced by microsporidian infections in human macrophages.


Sign in / Sign up

Export Citation Format

Share Document