scholarly journals Induction of Host Chemotactic Response by Encephalitozoon spp.

2006 ◽  
Vol 75 (4) ◽  
pp. 1619-1625 ◽  
Author(s):  
Jeffrey Fischer ◽  
Jeffrey West ◽  
Nnenaya Agochukwu ◽  
Colby Suire ◽  
Hollie Hale-Donze

ABSTRACT Microsporidians are a group of emerging pathogens typically associated with chronic diarrhea in immunocompromised individuals. The number of reports of infections with these organisms and the disseminated pathology is growing as diagnostic tools become more readily available. However, little is known about the innate immune response induced by and generated against these parasites. Using a coculture chemotaxis system, primary human macrophages were infected with Encephalitozoon cuniculi or Encephalitozoon intestinalis, and the recruitment of naïve monocytes was monitored. Encephalitozoon spp. induced an average threefold increase in migration of naïve cells 48 h postinfection, which corresponded to optimal infection of monocyte-derived-macrophages. A limited microarray analysis of infected macrophages revealed several chemokines involved in the inflammatory responses whose expression was upregulated, including CCL1, CCL2, CCL3, CCL4, CCL7, CCL15, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, and CXCL8. The levels of 6 of 11 chemokines also present in the microarray were confirmed to be elevated by protein profiling. Kinetic studies confirmed that secreted CCL2, CCL3, and CCL4 were expressed as early as 6 h postinfection, with peak expression at 12 to 24 h and expression remaining until 48 h postinfection. Neutralization of these chemokines, specifically CCL4, significantly reduced the number of migrating cells in vitro, indicating their role in the induction of monocyte migration. This mechanism of recruitment not only supports the evidence that in vivo cellular infiltration occurs but also provides new hosts for the parasites, which escape macrophages by rupturing the host cell. To our knowledge, this is the first documentation that chemokine production is induced by microsporidian infections in human macrophages.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1256-1256 ◽  
Author(s):  
Angelica A. Silveira ◽  
Clare Cunningham ◽  
Emma Corr ◽  
Wilson Alves Ferreira ◽  
Fernando F. Costa ◽  
...  

Abstract Intravascular hemolysis results in the release of damaging hemoglobin and free heme into the circulation. A role for heme as a danger associated molecular pattern (DAMP), with a function in sterile inflammatory responses, is becoming increasingly recognized. Whilst heme has known effects on leukocytes, activating their migration, adhesion molecule expression and cytokine expression, more recent data demonstrate that this molecule can induce NLRP3 inflammasome formation in murine bone marrow macrophages, with consequent interleukin (IL)-1β processing and neutrophil recruitment (Dutra et al., Proc. Natl Acad Sci. 111: E4110, 2014). We aimed to investigate whether heme can also induce inflammasome activation in primary human macrophages (hMACs) and to further characterize the pathways by which heme-induced inflammatory responses may be amplified under sterile conditions. CD14+ cells were separated from human peripheral blood (using anti-CD14 magnetic beads) and differentiated into hMACs under M-CSF media supplementation and in the presence of 10% fetal bovine serum. In vitro results are expressed as means ± SEM for triplicate cultures and are representative of three independent experiments. Priming of hMACs with lipopolysaccharide (LPS; 100 ng/mL; 3h) alone induced low level secretion of IL-1β (14.11±9.2 pg/106 cells, as measured by ELISA), while heme (50 µM), in the absence of pre-stimulation with LPS, was unable to induce significant IL-1β secretion within 3h (2.46±1.4 pg/106 cells). In contrast, co-incubation of hMACs with both LPS and heme for 3h significantly enhanced hMAC IL-1β release (490.3±36.3 pg/106 cells; P<0.05 compared to LPS alone). The inflamassome pathway inhibitors, MCC950 (5 µM; a specific inhibitor of NLRP3) and YVAD (40 µM; a caspase-1 inhibitor) significantly inhibited IL-1β secretion in LPS-primed hMACs stimulated with heme (reduced to 35.12±3.9; 184±30.4 pg/106 cells, respectively; 3h; P<0.05 compared to LPS/heme). Co-incubation of the LPS-primed cells with varying concentrations of heme, under the conditions employed, did not induce TNF-α production (data not shown), consistent with the hypothesis that IL-1β processing in heme-induced LPS-primed hMAC was mediated by inflammasome formation. Interestingly, qPCR showed that incubation of hMACs (1x106 cells/mL) with heme (50 µM) for 24h stimulated an approximately 10-fold increase (P<0.01) in the expression of the gene encoding, S100A8, another DAMP known to act as a TLR-4 agonist and to contribute to ischemia/reperfusion injury. Priming of hMACs with 1 µg/ml recombinant S100A8 for 3h and subsequent activation with heme (50 or 100 µM, 14h) significantly augmented the release of IL-1β (42.1±0.4 and 89.4±32.4 pg/106 cells for 50 and 100 µM heme, respectively; P<0.05), compared with S100A8 alone (20.6±3.5 pg/106 cells), without any modulation in TNF-α secretion (P>0.05). Using a model of acute intravascular hemolysis, we confirmed an association between heme release and S100A8 secretion, in vivo. Plasma heme levels increased significantly from 26.3±5 µM (i.v. saline control; N=4) to 87±18 µM in C57BL/6 mice at 1h after receiving i.v. water (150 µl; N=4, P=0.04). A concomitant increase in plasma S100A8 levels was also observed within 1h of the hemolytic stimulus (986±102 pg/mL, compared to 694.2±102 pg/ml in control mice; N=4, P=0.05), which was maintained for 3h (P<0.05). Thus, we present data to demonstrate that heme can induce IL-1β processing in LPS-primed human macrophages under in vitro conditions, probably via formation of the NLRP3/caspase-1 inflammasome machinery. In the absence of LPS, heme-stimulated hMACs can express the S100A8 DAMP; furthermore, a hemolytic stimulus induced mouse S100A8 production in vivo. As such, S100A8 may amplify heme-dependent inflammasome formation in an autocrine fashion, even under sterile conditions. Data provide new insights into the mechanisms by which heme may induce and potentiate inflammatory responses in hemolytic diseases, such as sickle cell disease, and suggest S100A8, together with heme, as potential therapeutic targets for reducing inflammation in these diseases. Disclosures Ferreira: Bayer AG: Research Funding. Almeida:Jassen & Cilag: Other: Currently employed with. Conran:Bayer AG: Research Funding.


2015 ◽  
Vol 112 (47) ◽  
pp. 14429-14435 ◽  
Author(s):  
Shimyn Slomovic ◽  
Keith Pardee ◽  
James J. Collins

There is a growing need to enhance our capabilities in medical and environmental diagnostics. Synthetic biologists have begun to focus their biomolecular engineering approaches toward this goal, offering promising results that could lead to the development of new classes of inexpensive, rapidly deployable diagnostics. Many conventional diagnostics rely on antibody-based platforms that, although exquisitely sensitive, are slow and costly to generate and cannot readily confront rapidly emerging pathogens or be applied to orphan diseases. Synthetic biology, with its rational and short design-to-production cycles, has the potential to overcome many of these limitations. Synthetic biology devices, such as engineered gene circuits, bring new capabilities to molecular diagnostics, expanding the molecular detection palette, creating dynamic sensors, and untethering reactions from laboratory equipment. The field is also beginning to move toward in vivo diagnostics, which could provide near real-time surveillance of multiple pathological conditions. Here, we describe current efforts in synthetic biology, focusing on the translation of promising technologies into pragmatic diagnostic tools and platforms.


Diabetes ◽  
1975 ◽  
Vol 24 (12) ◽  
pp. 1094-1100 ◽  
Author(s):  
A. Rabinovitch ◽  
A. Gutzeit ◽  
A. E. Renold ◽  
E. Cerasi

2021 ◽  
Vol 22 (13) ◽  
pp. 7099
Author(s):  
Pradeep Kumar Kopparapu ◽  
Meghshree Deshmukh ◽  
Zhicheng Hu ◽  
Majd Mohammad ◽  
Marco Maugeri ◽  
...  

Staphylococcal aureus (S. aureus), a Gram-positive bacteria, is known to cause various infections. Extracellular vesicles (EVs) are a heterogeneous array of membranous structures secreted by cells from all three domains of life, i.e., eukaryotes, bacteria, and archaea. Bacterial EVs are implied to be involved in both bacteria–bacteria and bacteria–host interactions during infections. It is still unclear how S. aureus EVs interact with host cells and induce inflammatory responses. In this study, EVs were isolated from S. aureus and mutant strains deficient in either prelipoprotein lipidation (Δlgt) or major surface proteins (ΔsrtAB). Their immunostimulatory capacities were assessed both in vitro and in vivo. We found that S. aureus EVs induced pro-inflammatory responses both in vitro and in vivo. However, this activity was dependent on lipidated lipoproteins (Lpp), since EVs isolated from the Δlgt showed no stimulation. On the other hand, EVs isolated from the ΔsrtAB mutant showed full immune stimulation, indicating the cell wall anchoring of surface proteins did not play a role in immune stimulation. The immune stimulation of S. aureus EVs was mediated mainly by monocytes/macrophages and was TLR2 dependent. In this study, we demonstrated that not only free Lpp but also EV-imbedded Lpp had high pro-inflammatory activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ying Tang ◽  
Mengchun Zhou ◽  
Rongrong Huang ◽  
Ling Shen ◽  
Li Yang ◽  
...  

Abstract Background Astrocytes participate in innate inflammatory responses within the mammalian central nervous system (CNS). HECT domain E3 ubiquitin protein ligase 1 (HECTD1) functions during microglial activation, suggesting a connection with neuroinflammation. However, the potential role of HECTD1 in astrocytes remains largely unknown. Results Here, we demonstrated that HECTD1 was upregulated in primary mouse astrocytes after 100 ng/ml lipopolysaccharide (LPS) treatment. Genetic knockdown of HECTD1 in vitro or astrocyte-specific knockdown of HECTD1 in vivo suppressed LPS-induced astrocyte activation, whereas overexpression of HECTD1 in vitro facilitated LPS-induced astrocyte activation. Mechanistically, we established that LPS activated σ-1R-JNK/p38 pathway, and σ-1R antagonist BD1047, JNK inhibitor SP600125, or p38 inhibitor SB203580 reversed LPS-induced expression of HECTD1, thus restored LPS-induced astrocyte activation. In addition, FOXJ2 functioned as a transcription factor of HECTD1, and pretreatment of primary mouse astrocytes with BD1047, SB203580, and SP600125 significantly inhibited LPS-mediated translocation of FOXJ2 into the nucleus. Conclusions Overall, our present findings suggest that HECTD1 participates in LPS-induced astrocyte activation by activation of σ-1R-JNK/p38-FOXJ2 pathway and provide a potential therapeutic strategy for neuroinflammation induced by LPS or any other neuroinflammatory disorders.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pierre Santucci ◽  
Daniel J. Greenwood ◽  
Antony Fearns ◽  
Kai Chen ◽  
Haibo Jiang ◽  
...  

AbstractTo be effective, chemotherapy against tuberculosis (TB) must kill the intracellular population of the pathogen, Mycobacterium tuberculosis. However, how host cell microenvironments affect antibiotic accumulation and efficacy remains unclear. Here, we use correlative light, electron, and ion microscopy to investigate how various microenvironments within human macrophages affect the activity of pyrazinamide (PZA), a key antibiotic against TB. We show that PZA accumulates heterogeneously among individual bacteria in multiple host cell environments. Crucially, PZA accumulation and efficacy is maximal within acidified phagosomes. Bedaquiline, another antibiotic commonly used in combined TB therapy, enhances PZA accumulation via a host cell-mediated mechanism. Thus, intracellular localisation and specific microenvironments affect PZA accumulation and efficacy. Our results may explain the potent in vivo efficacy of PZA, compared to its modest in vitro activity, and its critical contribution to TB combination chemotherapy.


2021 ◽  
Vol 11 (2) ◽  
pp. 144
Author(s):  
Kanta Kido ◽  
Norika Katagiri ◽  
Hiromasa Kawana ◽  
Shigekazu Sugino ◽  
Masanori Yamauchi ◽  
...  

Postoperative pain and consequent inflammatory responses after tissue incision adversely affects many surgical patients due to complicated mechanisms. In this study, we examined whether activation of protease-activated receptor 2 (PAR-2), which is stimulated by tryptase from mast cells, elicits nociception and whether the PAR-2 antagonist could reduce incisional nociceptive responses in vivo and in vitro. The effects of a selective PAR-2 antagonist, N3-methylbutyryl-N-6-aminohexanoyl-piperazine (ENMD-1068), pretreatment on pain behaviors were assessed after plantar incision in rats. The effects of a PAR-2 agonist, SLIGRL-NH2, on nociception was assessed after the injection into the hind paw. Furthermore, the responses of C-mechanosensitive nociceptors to the PAR-2 agonist were observed using an in vitro skin–nerve preparation as well. Intraplantar injection of SLIGRL-NH2 elicited spontaneous nociceptive behavior and hyperalgesia. Local administration of ENMD-1068 suppressed guarding behaviors, mechanical and heat hyperalgesia only within the first few hours after incision. SLIGRL-NH2 caused ongoing activity in 47% of C-mechanonociceptors in vitro. This study suggests that PAR-2 may support early nociception after incision by direct or indirect sensitization of C-fibers in rats. Moreover, PAR-2 may play a regulatory role in the early period of postoperative pain together with other co-factors to that contribute to postoperative pain.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinjini Chakraborty ◽  
Veronika Eva Winkelmann ◽  
Sonja Braumüller ◽  
Annette Palmer ◽  
Anke Schultze ◽  
...  

AbstractSingular blockade of C5a in experimental models of sepsis is known to confer protection by rescuing lethality and decreasing pro-inflammatory responses. However, the role of inhibiting C5a has not been evaluated in the context of sterile systemic inflammatory responses, like polytrauma and hemorrhagic shock (PT + HS). In our presented study, a novel and highly specific C5a L-aptamer, NoxD21, was used to block C5a activity in an experimental murine model of PT + HS. The aim of the study was to assess early modulation of inflammatory responses and lung damage 4 h after PT + HS induction. NoxD21-treated PT + HS mice displayed greater polymorphonuclear cell recruitment in the lung, increased pro-inflammatory cytokine levels in the bronchoalveolar lavage fluids (BALF) and reduced myeloperoxidase levels within the lung tissue. An in vitro model of the alveolar-capillary barrier was established to confirm these in vivo observations. Treatment with a polytrauma cocktail induced barrier damage only after 16 h, and NoxD21 treatment in vitro did not rescue this effect. Furthermore, to test the exact role of both the cognate receptors of C5a (C5aR1 and C5aR2), experimental PT + HS was induced in C5aR1 knockout (C5aR1 KO) and C5aR2 KO mice. Following 4 h of PT + HS, C5aR2 KO mice had significantly reduced IL-6 and IL-17 levels in the BALF without significant lung damage, and both, C5aR1 KO and C5aR2 KO PT + HS animals displayed reduced MPO levels within the lungs. In conclusion, the C5aR2 could be a putative driver of early local inflammatory responses in the lung after PT + HS.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anderson B. Guimaraes-Costa ◽  
John P. Shannon ◽  
Ingrid Waclawiak ◽  
Jullyanna Oliveira ◽  
Claudio Meneses ◽  
...  

AbstractApart from bacterial formyl peptides or viral chemokine mimicry, a non-vertebrate or insect protein that directly attracts mammalian innate cells such as neutrophils has not been molecularly characterized. Here, we show that members of sand fly yellow salivary proteins induce in vitro chemotaxis of mouse, canine and human neutrophils in transwell migration or EZ-TAXIScan assays. We demonstrate murine neutrophil recruitment in vivo using flow cytometry and two-photon intravital microscopy in Lysozyme-M-eGFP transgenic mice. We establish that the structure of this ~ 45 kDa neutrophil chemotactic protein does not resemble that of known chemokines. This chemoattractant acts through a G-protein-coupled receptor and is dependent on calcium influx. Of significance, this chemoattractant protein enhances lesion pathology (P < 0.0001) and increases parasite burden (P < 0.001) in mice upon co-injection with Leishmania parasites, underlining the impact of the sand fly salivary yellow proteins on disease outcome. These findings show that some arthropod vector-derived factors, such as this chemotactic salivary protein, activate rather than inhibit the host innate immune response, and that pathogens take advantage of these inflammatory responses to establish in the host.


Sign in / Sign up

Export Citation Format

Share Document