Carbon‐13 synthesis and NMR spectroscopic geometric isomer evaluation to support the filing of teriflunomide

2020 ◽  
Vol 64 (2) ◽  
pp. 82-88
Author(s):  
Michael Kurz ◽  
Dirk Gretzke ◽  
Rolf Hörlein ◽  
Sandrine Turpault ◽  
Jens Atzrodt ◽  
...  
Keyword(s):  
1982 ◽  
Vol 35 (10) ◽  
pp. 1300-1311 ◽  
Author(s):  
KEIJI HEMMI ◽  
MATSUHIKO ARATANI ◽  
HIDEKAZU TAKENO ◽  
SATOSHI OKADA ◽  
YOSHIO MIYAZAKI ◽  
...  

2002 ◽  
Vol 367 (1) ◽  
pp. 77-85 ◽  
Author(s):  
D. Shyamali WIMALASENA ◽  
Samantha P. JAYATILLAKE ◽  
Donovan C. HAINES ◽  
Kandatege WIMALASENA

A series of fumarate analogues has been used to explore the molecular mechanism of the activation of dopamine β-mono-oxygenase by fumarate. Mesaconic acid (MA) and trans-glutaconic acid (TGA) both activate the enzyme at low concentrations, similar to fumarate. However, unlike fumarate, TGA and MA interact effectively with the oxidized enzyme to inhibit it at concentrations of 1—5mM. Monoethylfumarate (EFum) does not activate the enzyme, but inhibits it. In contrast with TGA and MA, however, EFum inhibits the enzyme by interacting with the reduced form. The saturated dicarboxylic acid analogues, the geometric isomer and the diamide of fumaric acid do not either activate or inhibit the enzyme. The phenylethylamine—fumarate conjugate, N-(2-phenylethyl)fumaramide (PEA-Fum), is an 600-fold more potent inhibitor than EFum and behaves as a bi-substrate inhibitor for the reduced enzyme. The amide of PEA-Fum behaves similarly, but with an inhibition potency 20-fold less than that of PEA-Fum. The phenylethylamine conjugates of saturated or geometric isomers of fumarate do not inhibit the enzyme. Based on these findings and on steady-state kinetic analysis, an electrostatic model involving an interaction between the amine group of the enzyme-bound substrate and a carboxylate group of fumarate is proposed to account for enzyme activation by fumarate. Furthermore, in light of the recently proposed model for the similar copper enzyme, peptidylglycine α-hydroxylating mono-oxygenase, the above electrostatic model suggests that fumarate may also play a role in efficient electron transfer between the active-site copper centres of dopamine β-mono-oxygenase.


2021 ◽  
Author(s):  
◽  
Taitusi Taufa

<p>Over the course of this study, various species of Tongan marine sponges were investigated using an NMR-based screening method and has resulted in the discovery of three new sesterterpenes and 11 known compounds. Examination of the sponge Fascaplysinopsis sp. resulted in the isolation of two novel sesterterpenes, isoluffariellolide (46) and 1-O-methylisoluffariellolide (47). Compounds 46 and 47 share the same backbone pattern as the known luffariellolide (45) and 25-Omethylluffariellolide (107) respectively, and differ only in the substitution pattern of the butenolide rings. Isoluffariellolide (46) was found to be approximately six times less cytotoxic than 1-O-methylisoluffariellolide (47). Interestingly, these results suggested that the 1-O-methyl group in compound 47 plays an important role in the cytotoxicity of the compound. Secothorectolide (49), a new ring-opened and geometric isomer of the known compound thorectolide (48), was obtained from a sponge of the order Dictyoceratida. This ring closure and opening relationship was also observed between manoalide (109) and secomanoalide (110), as well as luffariellins A (141) and B (142). Despite the different carbon skeleton, the functional groups in 141 and 142 are similar with those in 109 and 110, respectively, and not surprisingly the biological properties are almost identical. The biological activities of compounds 48 and 49 were almost the same, which would give an insight into the structure-activity relationship (SAR) between these types of compounds.</p>


2021 ◽  
Author(s):  
◽  
Taitusi Taufa

<p>Over the course of this study, various species of Tongan marine sponges were investigated using an NMR-based screening method and has resulted in the discovery of three new sesterterpenes and 11 known compounds. Examination of the sponge Fascaplysinopsis sp. resulted in the isolation of two novel sesterterpenes, isoluffariellolide (46) and 1-O-methylisoluffariellolide (47). Compounds 46 and 47 share the same backbone pattern as the known luffariellolide (45) and 25-Omethylluffariellolide (107) respectively, and differ only in the substitution pattern of the butenolide rings. Isoluffariellolide (46) was found to be approximately six times less cytotoxic than 1-O-methylisoluffariellolide (47). Interestingly, these results suggested that the 1-O-methyl group in compound 47 plays an important role in the cytotoxicity of the compound. Secothorectolide (49), a new ring-opened and geometric isomer of the known compound thorectolide (48), was obtained from a sponge of the order Dictyoceratida. This ring closure and opening relationship was also observed between manoalide (109) and secomanoalide (110), as well as luffariellins A (141) and B (142). Despite the different carbon skeleton, the functional groups in 141 and 142 are similar with those in 109 and 110, respectively, and not surprisingly the biological properties are almost identical. The biological activities of compounds 48 and 49 were almost the same, which would give an insight into the structure-activity relationship (SAR) between these types of compounds.</p>


2004 ◽  
Vol 800 (1-2) ◽  
pp. 175-179 ◽  
Author(s):  
Ljiljana Zivanovic ◽  
Ivana Ivanovic ◽  
Sote Vladimirov ◽  
Mira Zecevic

Author(s):  
Douglass Taber

Oxygenated secondary stereogenic centers are readily available. There is a limited range of carbon nucleophiles that will displace a secondary leaving group in high yield with clean inversion. Teruaki Mukaiyama of the Kitasato Institute has described (Chem. Lett. 2007, 36, 2) an elegant addition to this list. Phosphinites such as 1 are easily prepared from the corresponding alcohols. Quinone oxidation in the presence of a nucleophile led via efficient displacement to the coupled product 2. The sulfone could be reduced with SmI2 to give 3. Enantioselective reduction of trisubstituted alkenes is also a powerful method for establishing alkylated stereogenic centers. Juan C. Carretero of the Universidad Autonoma de Madrid has found (Angew. Chem. Int. Ed. 2007, 46, 3329) that the enantioselective reduction of unsaturated pyridyl sulfones such as 4 was directed by the sulfone, so the other geometric isomer of 4 gave the opposite enantiomer of 5. The protected hydroxy sulfone 5 is a versatile chiral building block. Samuel H. Gellman of the University of Wisconsin has reported (J. Am. Chem. Soc. 2007, 129, 6050) an improved procedure for the aminomethylation of aldehydes. L-Proline-catalyzed condensation with the matched α-methyl benzylamine derivavative 7 gave the aldehyde, which was immediately reduced to the alcohol 8 to avoid racemization. The amino alcohol 8 was easily separated in diastereomerically-pure form. In the past, aldehydes have been efficiently α-alkylated using two-electron chemistry. David W. C. Macmillan of Princeton University has developed (Science 2007, 316, 582; J. Am. Chem. Soc. 2007, 129, 7004) a one-electron alternative. The organocatalyst 9 formed an imine with the aldehyde. One-electron oxidation led to an α-radical, which was trapped by the allyl silane (or, not pictured, a silyl enol ether) leading to the α-alkylated aldehyde 10. This is mechnistically related to the work reported independently by Mukund P. Sibi (J. Am. Chem. Soc. 2007, 129, 4124; OHL Feb. 11, 2008) on one-electron α-oxygenation of aldehydes. Secondary alkylated centers can also be prepared by SN2’ alkylation of prochiral substrates such as 11. Ben L. Feringa of the University of Groningen has shown (J. Org. Chem. 2007, 72, 2558) that the displacement proceeded with high ee even with conventional Grignard reagents.


Author(s):  
Douglass F. Taber

Disorazole C1 3, isolated from fermentation of the myxobacterium Sorangium cellu­losum, shows antifungal and anticancer activity. Amir H. Hoveyda of Boston College applied (J. Am. Chem. Soc. 2014, 136, 16136) recent advances in alkene metathesis from his group to enable the efficient assembly of 2 and so of 3. The ester 1 was assembled from the alcohol 11 and the acid 18. The preparation of 11 began with the enantioselective addition of 5 to 4 to give 6 and then 7, as described by Kalesse (Angew. Chem. Int. Ed. 2010, 49, 1619). Leighton allylation led to 8, that was then coupled with 9 to give 10 with high Z selectivity. Iodination of 10 followed by deprotection then completed the assembly of 11. The starting material for the acid 18 was the allylic alcohol 13. As reported by Cramer (Angew. Chem. Int. Ed. 2008, 47, 6483), exposure of the racemic alcohol 12 to vinyl acetate in the presence of Amano lipase PS converted one enantiomer to the acetate, leaving 13. Methylation of the secondary alcohol followed by acid-mediated removal of the t-butyl ester led to the acid 14, that was converted to the correspond­ing acyl fluoride and coupled with serine Me ester 15 to give 16. After cyclization to the oxazole 17, cross metathesis with five equivalents of 4-bromo-1-butene gave the homoallylic bromide, that was readily eliminated with DBU to give, after saponifica­tion, the acid 18. The cross metathesis of the coupled ester 1, a polyene, with 9 proceeded with remarkable selectivity to give 2, again as the Z geometric isomer. On exposure to the Heck catalyst Pd [(o-tolyl)3P]2, 2 dimerized efficiently. The deprotection was not straightforward, but conditions (H2SiF6, CH3OH, 4°C, 72 h) were found that deliv­ered 3 in 68% yield.


1982 ◽  
Vol 13 (39) ◽  
Author(s):  
G. CANTARELLI ◽  
P. GENTILI ◽  
S. MANZARDO ◽  
F. RAVENNA
Keyword(s):  

1988 ◽  
Vol 254 (1) ◽  
pp. 95-100 ◽  
Author(s):  
J D Moyer ◽  
N Malinowski ◽  
E A Napier ◽  
J Strong

The initial rate of uptake of [3H]myo-inositol by L1210 murine leukaemia cells is directly proportional to the extracellular concentration and unaffected by several analogues of myo-inositol even at millimolar concentrations. Scyllitol, a geometric isomer of myo-inositol, partially inhibited the uptake of myo-inositol (40% at 0.1 mM). A portion of the uptake of myo-inositol was not inhibited even at 5 mM-scyllitol. At steady-state the intracellular concentration of [3H]myo-inositol is directly proportional to the extracellular concentration. Addition of myo-inositol to medium does not enhance the growth of L1210 cells; these cells can maintain an extracellular concentration of 20 microM-myo-inositol even when grown in myo-inositol-free medium. Synthesis of myo-inositol from glucose by L1210 cells was demonstrated by use of [13C]glucose and m.s. L1210 cells maintain myo-inositol pools by a combination of synthesis de novo and uptake of exogenous myo-inositol by either passive diffusion or a low affinity carrier.


Sign in / Sign up

Export Citation Format

Share Document