Oxygen anion (O− ) and hydroxide anion (HO− ) reactivity with a series of old and new refrigerants

2018 ◽  
Vol 53 (4) ◽  
pp. 336-352 ◽  
Author(s):  
Clotilde Le Vot ◽  
Joël Lemaire ◽  
Pascal Pernot ◽  
Michel Heninger ◽  
Hélène Mestdagh ◽  
...  
Keyword(s):  
1987 ◽  
Vol 52 (10) ◽  
pp. 2482-2491 ◽  
Author(s):  
Ján Urban ◽  
Petr Kuzmič ◽  
David Šaman ◽  
Milan Souček

Anaerobic photolysis of dimethoxynitrobiphenyls IIIa-VIa in aqueous alkaline tert-butanol gave products of nucleophilic photosubstitution of methoxyl by hydroxide anion, while the dimethoxybiphenyls Ia and IIa were found unreactive. Regioselectivity of the reaction was examined in view of a possible “extended meta activation” by the nitro group. The most reactive substrate IIIa gives both C-3 and C-4 substitution products with an unsubstantial preference for the latter, which opposes the “extended meta selectivity” rule. All of the other compounds obey the rule, and 3,4-dimethoxy-3'-nitrobiphenyl (IVa) even displayed absolute selectivity by yielding C-3 substituted compound as the only product. 2,5-Dimethoxy substituted compounds underwent photosubstitution which much lower quantum yields than their 3,4-substituted counterparts, most probably due to some steric hindrance of conjugation. Similarly, 3-nitro-substituted biphenyls exhibited much lower overall reactivity than 4-nitro derivatives.


1981 ◽  
Vol 59 (11) ◽  
pp. 1615-1621 ◽  
Author(s):  
Scott D. Tanner ◽  
Gervase I. Mackay ◽  
Diethard K. Bohme

Flowing afterglow measurements are reported which provide rate constants and product identifications at 298 ± 2 K for the gas-phase reactions of OH− with CH3OH, C2H5OH, CH3OCH3, CH2O, CH3CHO, CH3COCH3, CH2CO, HCOOH, HCOOCH3, CH2=C=CH2, CH3—C≡CH, and C6H5CH3. The main channels observed were proton transfer and solvation of the OH−. Hydration with one molecule of H2O was observed either to reduce the rate slightly and lead to products which are the hydrated analogues of the "nude" reaction, or to stop the reaction completely, k ≤ 10−12 cm3 molecule−1 s−1. The reaction of OH−•H2O with CH3—C≡CH showed an uncertain intermediate behaviour.


Author(s):  
Bruce C. Bunker ◽  
William H. Casey

Water is one of the most complex fluids on Earth. Even after intense study, there are many aspects regarding the structure, properties, and chemistry of water that are not well understood. In this chapter, we highlight the attributes of water that dictate many of the reactions that take place between water and oxides. We start with a single water molecule and progress to water clusters, then finally to extended liquid and solid phases. This chapter provides a baseline for evaluating what happens when water encounters simple ions, soluble oxide complexes called hydrolysis products, and extended oxide phases. The primary phenomenon highlighted in this chapter is hydrogen bonding. Hydrogen bonding dominates the structure and properties of water and influences many water–oxide interactions. A single water molecule has eight valence electrons around a central oxygen anion. These electrons are contained in four sp3-hybridized molecular orbitals arranged as lobes that extend from the oxygen in a tetrahedral geometry. Each orbital is occupied by two electrons. Two of the lobes are bonded to protons; the other two lobes are referred to as lone pairs of electrons. The H–O–H bond angle of 104.5° is close to the tetrahedral angle of 109.5°. The O–H bond length in a single water molecule is 0.96 Ǻ. It is important to recognize that this bond length is really a measure of the electron density associated with the oxygen lone pair bonded to the proton. This is because a proton is so incredibly small (with an ionic radius of only 1.3·10−5 Ǻ) that it makes no contribution to the net bond length. The entire water molecule has a hard sphere diameter of 2.9 Ǻ, which is fairly typical for an oxygen anion. This means the unoccupied lone pairs are distended relative to the protonated lone pairs, extending out to roughly 1.9 Ǻ. The unequal distribution of charges introduces a dipole within the water molecule that facilitates electrostatic interactions with other molecules.


2003 ◽  
Vol 59 (4) ◽  
pp. 449-455 ◽  
Author(s):  
Maria Sayagués ◽  
Katherine Titmuss ◽  
Rudiger Meyer ◽  
Angus Kirkland ◽  
Jeremy Sloan ◽  
...  

The structure of Nd5Ti5O17 has been refined from a reconstruction of the specimen exit-plane wave restored from a series of incrementally defocused high-resolution transmission electron microscope (HRTEM) images. The phase of the exit-plane wave shows contrast attributable to the oxygen anion sublattice and coupled with simulations provides confirmation of the composition of the cation sites as a function of sample thickness. The enhanced resolution in the exit-plane wave additionally allows a direct measurement of the `skewing' of the perovskite slabs.


Sign in / Sign up

Export Citation Format

Share Document