Diversification of hypervariable region 1 of hepatitis C virus after liver transplantation

2003 ◽  
Vol 70 (2) ◽  
pp. 212-218 ◽  
Author(s):  
Xiaofeng Fan ◽  
Adrian M. Di Bisceglie
2001 ◽  
Vol 65 (2) ◽  
pp. 266-275 ◽  
Author(s):  
Alberto Sánchez-Fueyo ◽  
Mireia Giménez-Barcons ◽  
Francesc Puig-Basagoiti ◽  
Antoni Rimola ◽  
Jose María Sánchez-Tapias ◽  
...  

2005 ◽  
Vol 78 (2) ◽  
pp. 372-382 ◽  
Author(s):  
Cristiano Scottà ◽  
Loretta Tuosto ◽  
Anna Maria Masci ◽  
Luigi Racioppi ◽  
Enza Piccolella ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kamila Caraballo Cortés ◽  
Osvaldo Zagordi ◽  
Tomasz Laskus ◽  
Rafał Płoski ◽  
Iwona Bukowska-Ośko ◽  
...  

Genetic variability of hepatitis C virus (HCV) determines pathogenesis of infection, including viral persistence and resistance to treatment. The aim of the present study was to characterize HCV genetic heterogeneity within a hypervariable region 1 (HVR1) of a chronically infected patient by ultradeep 454 sequencing strategy. Three independent sequencing error correction methods were applied. First correction method (Method I) implemented cut-off for genetic variants present in less than 1%. In the second method (Method II), a condition to call a variant was bidirectional coverage of sequencing reads. Third method (Method III) usedShort Read Assembly into Haplotypes(ShoRAH) program. After the application of these three different algorithms, HVR1 population consisted of 8, 40, and 186 genetic haplotypes. The most sensitive method was ShoRAH, allowing to reconstruct haplotypes constituting as little as 0.013% of the population. The most abundant genetic variant constituted only 10.5%. Seventeen haplotypes were present in a frequency above 1%, and there was wide dispersion of the population into very sparse haplotypes. Our results indicate that HCV HVR1 heterogeneity andquasispeciespopulation structure may be reconstructed by ultradeep sequencing. However, credible analysis requires proper reconstruction methods, which would distinguish sequencing error from real variabilityin vivo.


2001 ◽  
Vol 75 (24) ◽  
pp. 12412-12420 ◽  
Author(s):  
Chengyao Li ◽  
Daniel Candotti ◽  
Jean-Pierre Allain

ABSTRACT Frequent mutations in hypervariable region 1 (HVR1) of the main envelope protein of hepatitis C virus (HCV) is a major mechanism of persistence by escaping the host immune recognition. HVR1 contains an epitope eliciting neutralizing antibodies. This study was aimed to prepare broadly cross-reacting, high-affinity, monoclonal antibodies (MAb) to the HVR1 C terminus of HCV with potential therapeutic neutralizing capacity. A conserved amino residue group of glycine (G) at position 23 and glutamic acid (Q) at position 26 in HVR1 was confirmed as a key epitope against which two MAbs were selected and characterized. MAbs 2P24 and 15H4 were immunoglobulin G1 kappa chain [IgG1(κ)], cross-reacted with 32 and 30 of 39 random C-terminal HVR1 peptides, respectively, and did not react with other HCV peptides. The VH of 2P24 and 15H4 heavy chains originated from Igh germ line v gene family 1 and 8, respectively. In contrast, the VL κ sequences were highly homologous. The affinity (K d ) of 2P24 and 15H4 (10−9 or 10−8 M with two immunizing peptides and 10−8 M with two nonimmunizing HVR1 peptides) paralleled the reactivity obtained with peptide enzyme immunoassay. MAbs 2P24 and 15H4 captured 25 of 31 (81%) HCV in unselected patients' plasmas. These antibodies also blocked HCV binding to Molt-4 cells in a dose-dependent fashion. The data presented suggest that broadly cross-reactive MAbs to a conserved epitope within HCV HVR1 can be produced. Clinical application for passive immunization in HCV-related chronic liver disease and after liver transplantation is considered.


Hepatology ◽  
2016 ◽  
Vol 64 (6) ◽  
pp. 1881-1892 ◽  
Author(s):  
Jannick Prentoe ◽  
Rodrigo Velázquez-Moctezuma ◽  
Steven K.H. Foung ◽  
Mansun Law ◽  
Jens Bukh

Sign in / Sign up

Export Citation Format

Share Document