454 sequencing
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 7)

H-INDEX

38
(FIVE YEARS 1)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12290
Author(s):  
Sijun Liu ◽  
Si-Ming Zhang ◽  
Sarah K. Buddenborg ◽  
Eric S. Loker ◽  
Bryony C. Bonning

Schistosomiasis, which infects more than 230 million people, is vectored by freshwater snails. We identified viral sequences in the transcriptomes of Biomphalaria pfeifferi (BP) and Bulinus globosus (BuG), two of the world’s most important schistosomiasis vectors in Africa. Sequences from 26 snails generated using Illumina Hi-Seq or 454 sequencing were assembled using Trinity and CAP3 and putative virus sequences were identified using a bioinformatics pipeline. Phylogenetic analyses were performed using viral RNA-dependent RNA polymerase and coat protein sequences to establish relatedness between virus sequences identified and those of known viruses. Viral sequences were identified from the entire snail holobiont, including symbionts, ingested material and organisms passively associated with the snails. Sequences derived from more than 17 different viruses were found including five near full-length genomes, most of which were small RNA viruses with positive sense RNA genomes (i.e., picorna-like viruses) and some of which are likely derived from adherent or ingested diatoms. Based on phylogenetic analysis, five of these viruses (including BPV2 and BuGV2) along with four Biomphalaria glabrata viruses reported previously, cluster with known invertebrate viruses and are putative viruses of snails. The presence of RNA sequences derived from four of these novel viruses in samples was confirmed. Identification of the genome sequences of candidate snail viruses provides a first step toward characterization of additional gastropod viruses, including from species of biomedical significance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qi Yan ◽  
Jianming Deng ◽  
Feng Wang ◽  
Yongqin Liu ◽  
Keshao Liu

Microbial communities normally comprise a few core species and large numbers of satellite species. These two sub-communities have different ecological and functional roles in natural environments, but knowledge on the assembly processes and co-occurrence patterns of the core and satellite species in Tibetan lakes is still sparse. Here, we investigated the ecological processes and co-occurrence relationships of the core and satellite bacterial sub-communities in the Tibetan lakes via 454 sequencing of 16S rRNA gene. Our studies indicated that the core and satellite bacterial sub-communities have similar dominant phyla (Proteobacteria, Bacteroidetes, and Actinobacteria). But the core sub-communities were less diverse and exhibited a stronger distance-decay relationship than the satellite sub-communities. In addition, topological properties of nodes in the network demonstrated that the core sub-communities had more complex and stable co-occurrence associations and were primarily driven by stochastic processes (58.19%). By contrast, the satellite sub-communities were mainly governed by deterministic processes (62.17%). Overall, this study demonstrated the differences in the core and satellite sub-community assembly and network stability, suggesting the importance of considering species traits to understand the biogeographic distribution of bacterial communities in high-altitude lakes.


2021 ◽  
Author(s):  
Yilin Deng ◽  
Xuewei Ding ◽  
Qingyuan Song ◽  
Gang Zhao ◽  
Lei Han ◽  
...  

Abstract Purpose The purpose of this study was to characterize alterations in mucosa-associated microbiota in different anatomical locations of the stomach during gastric cancer progression and to identify associations between Helicobacter pylori infection and gastric microbial changes in patients with gastric cancer. Methods Twenty-five H. pylori negative subjects with chronic gastritis and thirty-four subjects with gastric cancer were recruited, including H. pylori negative and positive patients with tumors in the antrum and the corpus. Gastric mucosa-associated microbiota were determined by 16S ribosomal RNA gene sequencing using a 454 sequencing platform. Results We found that individuals with chronic gastritis from three different anatomical sites exhibited different microbiota compositions, although the microbial alpha diversity, richness and beta diversity were similar. Compared to patients with chronic gastritis, the gastric microbiota compositions were significantly different at the order level in the antrum and the corpus of patients with gastric cancer, which was dependent on the H. pylori infection status. Microbial alpha diversity and species richness, however, were similar between chronic gastritis and gastric cancer cases and independent of H. pylori status. The microbial community structure in patients with gastric cancer was distinct from that in patients with chronic gastritis. In addition, we found that the presence of H. pylori markedly altered the structure in gastric corpus cancer, but only mildly affected the antrum. Conclusion Our data revealed distinct niche-specific microbiota alterations during the progression from gastritis to gastric cancer. These alterations may reflect adaptions of the microbiota to the diverse specific environmental habitats in the stomach, and may play an important, as yet undetermined, role in gastric carcinogenesis.


2019 ◽  
Vol 95 (11) ◽  
Author(s):  
Christoffer Bugge Harder ◽  
Christian Nyrop Albers ◽  
Søren Rosendahl ◽  
Jens Aamand ◽  
Lea Ellegaard-Jensen ◽  
...  

ABSTRACT As groundwater-fed waterworks clean their raw inlet water with sand filters, a variety of pro- and eukaryotic microbial communities develop on these filters. While several studies have targeted the prokaryotic sand filter communities, little is known about the eukaryotic communities, despite the obvious need for knowledge of microorganisms that get in contact with human drinking water. With a new general eukaryotic primer set (18S, V1-V3 region), we performed FLX-454 sequencing of material from 21 waterworks' sand filters varying in age (3–40 years) and geographical location on a 250 km east–west axis in Denmark, and put the data in context of their previously published prokaryotic communities. We find that filters vary highly in trophic complexity depending on age, from simple systems with bacteria and protozoa (3–6 years) to complex, mature systems with nematodes, rotifers and turbellarians as apex predators (40 years). Unlike the bacterial communities, the eukaryotic communities display a clear distance–decay relationship that predominates over environmental variations, indicating that the underlying aquifers feeding the filters harbor distinct eukaryotic communities with limited dispersal in between. Our findings have implications for waterworks' filter management, and offer a window down to the largely unexplored eukaryotic microbiology of groundwater aquifers.


2019 ◽  
Vol 8 (35) ◽  
Author(s):  
Daniel Fucich ◽  
David Marsan ◽  
Ana Sosa ◽  
Feng Chen

Synechococcus sp. strain CB0101 is a model strain for cyanobacteria living in the estuarine environment. It is also a representative member of marine Synechococcus subcluster 5.2. The draft genome sequence of CB0101 was reported in 2014 with 454 sequencing. Here, we report the complete genome sequence of CB0101, obtained with PacBio sequencing. CB0101 contains a specialized array of genes which are involved in sensing, responding to, and persisting in the presence of environmental stress.


2019 ◽  
Vol 14 (No. 1) ◽  
pp. 22-31
Author(s):  
Yuanhao He ◽  
Xiaojun Deng ◽  
Feng Che

To explore the diversity of soil bacteria and changes in the bacterial community structure of Chinese fir plantations of different generations and developmental stages, the genetic diversity of soil bacteria was studied using the 454 sequencing technology. The results showed that the bacterial genetic diversity and community structure of Chinese fir plantation plots under monoculture planting and rotation planting practices were as follows: the Shannon diversity indices of first-generation young plantation of Chinese fir plantations (FYC), second-generation young plantation (SYC), and third-generation young plantation (TYC) initially decreased and then increased to 8.45, 8.1, and 8.43, respectively. Due to different management and tending measures, the phyla showing considerable differences in relative abundance were Cyanobacteria, Nitrospirae, Fibrobacteres, Thermotogae, and Planctomycetes. The bacterial genetic diversity and community structure of Chinese fir plantations at different developmental stages were as follows: the bacterial diversity and the number of operational taxonomic units (OTUs) decreased with increasing forest age; with the increasing forest age of Chinese fir, the bacteria with considerable differences in the relative abundance were Burkholderiales, Xanthomonadales, Ktedonobacteria, Nitrosomonadales, Anaerolineae, and Holophagae. The predominant bacteria of the Chinese fir plantations were Acidothermus, Bradyrhizobium, Lactococcus, Planctomyces, Sorangium, and Bryobacter.  


2018 ◽  
Vol 48 (10) ◽  
Author(s):  
Dan Xing ◽  
Zhenhong Wang ◽  
Jiujun Xiao ◽  
Shiyu Han ◽  
Chaobin Luo ◽  
...  

ABSTRACT: Arbuscular mycorrhizal fungi (AMF) have been attracted more scientific attentions due to its critical role in enhancement of drought tolerance of plants for growth and vegetation restoration in karst fragile ecosystem. However, scientists know little about the AMF composition and diversity occurring in root systems of mulberry (Morus sp.), and in karst habitats which return land use from mulberry forestry, as well as the effects of soil environment change on the diversity of the AMF communities. To understand: (1) the AMF community composition and diversity at different stage of returning cropland to forest; and (2) the effects of soil environment change on the diversity of the AMF communities, soil and mulberry root samples were collected from Bijie and Libo sites, China, which experienced one and ten years, respectively, after returning croplands to forest. With the high throughput 454-sequencing technology, 8 known genera including 83 virtual species were distinguished and the genera Glomus, Paraglomus, Archaeospora and Diversispora were found to be dominant in soil and root sample. Compared to the samples in Libo, the genera Glomus, Paraglomus, Acaulospora and Claroideoglomus in root samples at Bijie site had a relatively abundance of species indicating that the returning cropland to forest is benefit to the AMF diversity and abundance, which was attribute to the variation of soil physiochemical properties. This conclusion is of great significance for guiding the return of farmland to forests.


2017 ◽  
Author(s):  
Elin Videvall ◽  
Maria Strandh ◽  
Anel Engelbrecht ◽  
Schalk Cloete ◽  
Charlie K. Cornwallis

AbstractThe gut microbiome of animals is emerging as an important factor influencing ecological and evolutionary processes. A major bottleneck in obtaining microbiome data from large numbers of samples is the time-consuming laboratory procedures, specifically the isolation of DNA and generation of amplicon libraries. Recently, direct PCR kits have been developed that circumvent conventional DNA extraction steps, thereby streamlining the laboratory process by reducing preparation time and costs. However, the reliability and efficacy of the direct PCR method for measuring host microbiomes has not yet been investigated other than in humans with 454-sequencing. Here, we conduct a comprehensive evaluation of the microbial communities obtained with direct PCR and the widely used MoBio PowerSoil DNA extraction kit in five distinct gut sample types (ileum – caecum – colon – faeces – cloaca) from 20 juvenile ostriches, using 16S rRNA Illumina MiSeq sequencing. We found that direct PCR was highly comparable over a range of measures to the DNA extraction method in caecal, colon, and faecal samples. However, the two methods recovered significantly different microbiomes in cloacal, and especially ileal samples. We also sequenced 100 replicate sample pairs to evaluate repeatability during both extraction and PCR stages, and found that both methods were highly consistent for caecal, colon, and faecal samples (rs > 0.7), but had low repeatability for cloacal (rs = 0.39) and ileal (rs = −0.24) samples. This study indicates that direct PCR provides a fast, cheap, and reliable alternative to conventional DNA extraction methods for retrieving 16S data, which will aid future gut microbiome studies of animals.


Sign in / Sign up

Export Citation Format

Share Document