Fault diagnosis in switched-linear systems by emulation of behavioral models on FPGA: A case study of current-mode buck converter

Author(s):  
Rahul Bhattacharya ◽  
Subindu Kumar ◽  
Santosh Biswas
2013 ◽  
Vol 385-386 ◽  
pp. 1151-1154
Author(s):  
Xiao Jing Li ◽  
Ai Guo Wu

In this paper, the model of Buck Converter in DCM is built based on the theories of Hybrid Systems and Switched Linear Systems firstly. Then the output controllability of Buck Converter is studied and its sufficient and necessary condition is given. In the end, the simulation analysis and verification are provided. The research results indicate that the output of Buck Converter can be stabilized at the setting value when the condition of output controllability is satisfied, on the contrary, the output can't be controlled stably.


2011 ◽  
Vol 131 (1) ◽  
pp. 78-85 ◽  
Author(s):  
Takahiro Sano ◽  
Yoshiharu Ogawa ◽  
Takaaki Shimonosono ◽  
Tadayuki Wada

Author(s):  
Abdelhak Goudjil ◽  
Mathieu Pouliquen ◽  
Eric Pigeon ◽  
Olivier Gehan ◽  
Tristan Bonargent

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3385
Author(s):  
Erickson Puchta ◽  
Priscilla Bassetto ◽  
Lucas Biuk ◽  
Marco Itaborahy Filho ◽  
Attilio Converti ◽  
...  

This work deals with metaheuristic optimization algorithms to derive the best parameters for the Gaussian Adaptive PID controller. This controller represents a multimodal problem, where several distinct solutions can achieve similar best performances, and metaheuristics optimization algorithms can behave differently during the optimization process. Finding the correct proportionality between the parameters is an arduous task that often does not have an algebraic solution. The Gaussian functions of each control action have three parameters, resulting in a total of nine parameters to be defined. In this work, we investigate three bio-inspired optimization methods dealing with this problem: Particle Swarm Optimization (PSO), the Artificial Bee Colony (ABC) algorithm, and the Whale Optimization Algorithm (WOA). The computational results considering the Buck converter with a resistive and a nonlinear load as a case study demonstrated that the methods were capable of solving the task. The results are presented and compared, and PSO achieved the best results.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Zhe Yang ◽  
Dejan Gjorgjevikj ◽  
Jianyu Long ◽  
Yanyang Zi ◽  
Shaohui Zhang ◽  
...  

AbstractSupervised fault diagnosis typically assumes that all the types of machinery failures are known. However, in practice unknown types of defect, i.e., novelties, may occur, whose detection is a challenging task. In this paper, a novel fault diagnostic method is developed for both diagnostics and detection of novelties. To this end, a sparse autoencoder-based multi-head Deep Neural Network (DNN) is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data. The detection of novelties is based on the reconstruction error. Moreover, the computational burden is reduced by directly training the multi-head DNN with rectified linear unit activation function, instead of performing the pre-training and fine-tuning phases required for classical DNNs. The addressed method is applied to a benchmark bearing case study and to experimental data acquired from a delta 3D printer. The results show that its performance is satisfactory both in detection of novelties and fault diagnosis, outperforming other state-of-the-art methods. This research proposes a novel fault diagnostics method which can not only diagnose the known type of defect, but also detect unknown types of defects.


Sign in / Sign up

Export Citation Format

Share Document