A computational method based on the modification of the variational iteration method for determining the solution of the optimal control problems

Author(s):  
Behzad Kafash ◽  
Zahra Rafiei ◽  
Seyed M. Karbassi ◽  
Abdul M. Wazwaz
2016 ◽  
Vol 24 (1) ◽  
pp. 18-36 ◽  
Author(s):  
Ali Alizadeh ◽  
Sohrab Effati

In this work, the variational iteration method (VIM) is used to solve a class of fractional optimal control problems (FOCPs). New Lagrange multipliers are determined and some new iterative formulas are presented. The fractional derivative (FD) in these problems is in the Caputo sense. The necessary optimality conditions are achieved for FOCPs in terms of associated Euler–Lagrange equations and then the VIM is used to solve the resulting fractional differential equations. This technique rapidly provides the convergent successive approximations of the exact solution and the solutions approach the classical solutions of the problem as the order of the FDs approaches 1. To achieve the solution of the FOCPs using VIM, four illustrative examples are included to demonstrate the validity and applicability of the proposed method.


2020 ◽  
Vol 54 (5) ◽  
pp. 1419-1435
Author(s):  
Abderrahmane Akkouche ◽  
Mohamed Aidene

In this paper, the Picard’s iteration method is proposed to obtain an approximate analytical solution for linear and nonlinear optimal control problems with quadratic objective functional. It consists in deriving the necessary optimality conditions using the minimum principle of Pontryagin, which result in a two-point-boundary-value-problem (TPBVP). By applying the Picard’s iteration method to the resulting TPBVP, the optimal control law and the optimal trajectory are obtained in the form of a truncated series. The efficiency of the proposed technique for handling optimal control problems is illustrated by four numerical examples, and comparison with other methods is made.


Sign in / Sign up

Export Citation Format

Share Document