Divalent metal transporter 1 up-regulation is involved in the 6-hydroxydopamine-induced ferrous iron influx

2007 ◽  
Vol 85 (14) ◽  
pp. 3118-3126 ◽  
Author(s):  
Ning Song ◽  
Hong Jiang ◽  
Jun Wang ◽  
Jun-Xia Xie
Cell Research ◽  
2010 ◽  
Vol 20 (3) ◽  
pp. 345-356 ◽  
Author(s):  
Hong Jiang ◽  
Ning Song ◽  
Huamin Xu ◽  
Shuzhen Zhang ◽  
Jun Wang ◽  
...  

2002 ◽  
Vol 282 (3) ◽  
pp. G534-G539 ◽  
Author(s):  
Jay N. Umbreit ◽  
Marcel E. Conrad ◽  
Lucille N. Hainsworth ◽  
Marcia Simovich

Inorganic iron can be transported into cells in the absence of transferrin. Ferric iron enters cells utilizing an integrin-mobilferrin-paraferritin pathway, whereas ferrous iron uptake is facilitated by divalent metal transporter-1 (DMT-1). Immunoprecipitation studies using antimobilferrin antibody precipitated the previously described large-molecular-weight protein complex named paraferritin. It was previously shown that paraferritin functions as an intracellular ferrireductase, reducing ferric iron to ferrous iron utilizing NADPH as the energy source. It functions in the pathway for the cellular uptake of ferric iron. This multipeptide protein contains a number of active peptides, including the ferric iron binding protein mobilferrin and a flavin monooxygenase. The immunoprecipitates and purified preparations of paraferritin also contained DMT-1. This identifies DMT-1 as one of the peptides constituting the paraferritin complex. Since paraferritin functions to reduce newly transported ferric iron to ferrous iron and DMT-1 can transport ferrous iron, these findings suggest a role for DMT-1 in conveyance of iron from paraferritin to ferrochelatase, the enzyme utilizing ferrous iron for the synthesis of heme in the mitochondrion.


2021 ◽  
Vol 22 (15) ◽  
pp. 8013
Author(s):  
Taewook Kang ◽  
Honggang Huang ◽  
Thomas Mandrup-Poulsen ◽  
Martin R. Larsen

Pro-inflammatory cytokines promote cellular iron-import through enhanced divalent metal transporter-1 (DMT1) expression in pancreatic β-cells, consequently cell death. Inhibition of β-cell iron-import by DMT1 silencing protects against apoptosis in animal models of diabetes. However, how alterations of signaling networks contribute to the protective action of DMT1 knock-down is unknown. Here, we performed phosphoproteomics using our sequential enrichment strategy of mRNA, protein, and phosphopeptides, which enabled us to explore the concurrent molecular events in the same set of wildtype and DMT1-silenced β-cells during IL-1β exposure. Our findings reveal new phosphosites in the IL-1β-induced proteins that are clearly reverted by DMT1 silencing towards their steady-state levels. We validated the levels of five novel phosphosites of the potential protective proteins using parallel reaction monitoring. We also confirmed the inactivation of autophagic flux that may be relevant for cell survival induced by DMT1 silencing during IL-1β exposure. Additionally, the potential protective proteins induced by DMT1 silencing were related to insulin secretion that may lead to improving β-cell functions upon exposure to IL-1β. This global profiling has shed light on the signal transduction pathways driving the protection against inflammation-induced cell death in β-cells after DMT1 silencing.


2014 ◽  
Vol 229 ◽  
pp. S88
Author(s):  
Zeliha Kayaalti ◽  
Dilek Kaya Akyuzlu ◽  
Vugar Ali Türksoy ◽  
Esma Soylemez ◽  
Tulin Soylemezoglu

Sign in / Sign up

Export Citation Format

Share Document