transferrin receptor 1
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 75)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Steinunn Sara Helgudóttir ◽  
Kasper Bendix Johnsen ◽  
Lisa Juul Routhe ◽  
Charlotte L.M. Rasmussen ◽  
Azra Karamehmedovic ◽  
...  

Abstract BackgroundThe objectives of the present study were to investigate whether the expression of transferrin receptor 1 (TfR1), glucose transporter 1 (Glut1), or Cluster of Differentiation 98 Heavy Chain (CD98hc) is epigenetically regulated in brain capillary endothelial cells (BCECs) denoting the blood-brain barrier (BBB).MethodsThe expression of these targets was investigated both in vitro and in vivo following treatment with the histone deacetylase inhibitor (HDACi) valproic acid (VPA). Mice were injected intraperitoneally with VPA followed by analysis of isolated brain capillaries, and the capillary depleted brain samples. Brain tissue, isolated brain capillaries, and cultured primary endothelial cells were analyzed by RT-qPCR, immunolabeling and ELISA for expression of TfR1, Glut1 and CD98hc. We also studied the vascular targeting in VPA-treated mice injected with monoclonal anti-transferrin receptor (Ri7) conjugated with 1.4 nm gold nanoparticles. ResultsValidating the effects of VPA on gene transcription in BCECs, transcriptomic analysis identified 24,371 expressed genes, of which 305 were differentially expressed with 192 upregulated and 113 downregulated genes. In vitro using BCECs co-cultured with glial cells, the mRNA expression of Tfrc was significantly higher after VPA treatment for 6 h with its expression returning to baseline after 24 h. Conversely, the mRNA expression of Glut1 and Cd98hc was unaffected by VPA treatment. In vivo, the TfR1 protein expression in brain capillaries increased significantly after treatment with both 100 mg/kg and 400 mg/kg VPA. Conversely, VPA treatment did not increase GLUT1 or CD98hc. Using ICP-MS-based quantification, the brain uptake of nanogold conjugated anti-TfR1 antibodies was non-significant in spite of increased expression of TfR1. ConclusionsWe report that VPA treatment upregulates TfR1 at the BBB both in vivo and in vitro in isolated primary endothelial cells. In contrast, VPA treatment does not influence the expression of GLUT1 and CD98hc. The increase in the overall TfR1 protein expression however does not increase transport of TfR-targeted monoclonal antibody and indicates that targeted delivery using the transferrin receptor should aim for increased mobilization of already available transferrin receptor molecules to improve trafficking through the BBB.


2021 ◽  
Vol 10 (23) ◽  
pp. 5587
Author(s):  
Piotr Zapała ◽  
Łukasz Fus ◽  
Zbigniew Lewandowski ◽  
Karolina Garbas ◽  
Łukasz Zapała ◽  
...  

In patients treated for prostate cancer (PCa) with radical prostatectomy (RP), determining the risk of extraprostatic extension (EPE) and nodal involvement (NI) remains crucial for planning nerve-sparing and extended lymphadenectomy. The study aimed to determine proteins that could serve as immunohistochemical markers of locally advanced PCa. To select candidate proteins associated with adverse pathologic features (APF) reverse-phase protein array data of 498 patients was retrieved from The Cancer Genome Atlas. The analysis yielded 6 proteins which were then validated as predictors of APF utilizing immunohistochemistry in a randomly selected retrospective cohort of 53 patients. For univariate and multivariate analysis, logistic regression was used. Positive expression of TfR1 (OR 13.74; p = 0.015), reduced expression of CD49b (OR 10.15; p = 0.013), and PSA (OR 1.29; p = 0.013) constituted independent predictors of EPE, whereas reduced expression of e-cadherin (OR 10.22; p = 0.005), reduced expression of CD49b (OR 24.44; p = 0.017), and PSA (OR 1.18; p = 0.002) were independently associated with NI. Both models achieved high discrimination (AUROC 0.879 and 0.888, respectively). Immunohistochemistry constitutes a straightforward tool that might be easily utilized before RP. Expression of TfR1 and CD49b is associated with EPE, whereas expression of e-cadherin and CD49b is associated with NI. Since following immunohistochemical markers predicts respective APFs independently from PSA, in the future they might supplement existing preoperative nomograms or be implemented in novel tools.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2000
Author(s):  
Francesco Mainini ◽  
Arianna Bonizzi ◽  
Marta Sevieri ◽  
Leopoldo Sitia ◽  
Marta Truffi ◽  
...  

Protein nanocages have been studied extensively, due to their unique architecture, exceptional biocompatibility and highly customization capabilities. In particular, ferritin nanocages (FNs) have been employed for the delivery of a vast array of molecules, ranging from chemotherapeutics to imaging agents, among others. One of the main favorable characteristics of FNs is their intrinsic targeting efficiency toward the Transferrin Receptor 1, which is overexpressed in many tumors. Furthermore, genetic manipulation can be employed to introduce novel variants that are able to improve the loading capacity, targeting capabilities and bio-availability of this versatile drug delivery system. In this review, we discuss the main characteristics of FN and the most recent applications of this promising nanotechnology in the field of oncology with a particular emphasis on the imaging and treatment of solid tumors.


2021 ◽  
pp. 1-29
Author(s):  
Jia Lin ◽  
Feifei Huang ◽  
Tianzeng Liang ◽  
Qin Qin ◽  
Qiao Xu ◽  
...  

Abstract This study assessed the molecular mechanism of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) protection against IPEC-1 cell damage induced by deoxynivalenol (DON). The cells were divided into six groups, including the CON group, the EPA group, the DHA group, the DON group, the EPA+DON group, and the DHA+DON group. RNA sequencing was used to investigate the potential mechanism, and qRT-PCR was employed to verify the expression of selected genes. Changes in ultrastructure were used to estimate pathological changes and endoplasmic reticulum (ER) injury in IPEC-1 cells. Transferrin receptor 1 (TFR1) was tested by ELISA. Fe2+ and malondialdehyde (MDA) contents were estimated by spectrophotometry, and reactive oxygen species (ROS) was assayed by fluorospectrophotometry. RNA sequencing analysis showed that EPA and DHA had a significant effect on the expression of genes involved in ER stress and iron balance during DON-induced cell injury. The results showed that DON increased ER damage, the content of MDA and ROS, the ratio of X-box binding protein 1s (XBP-1s)/X-box binding protein 1u (XBP-1u), the concentration of Fe2+, and the activity of TFR1. However, the results also showed that EPA and DHA decreased the ratio of XBP-1s/XBP-1u to relieve DON-induced ER damage of IPEC-1 cells. Moreover, EPA and DHA (especially DHA) reversed the factors related to iron balance. It can be concluded that EPA and DHA reversed IPEC-1 cell damage induced by DON. DHA has the potential to protect IPEC-1 cells from DON-induced iron imbalance by inhibiting ER stress.


2021 ◽  
Author(s):  
Haibo Zhao ◽  
Bhaba K Das ◽  
Lei Wang ◽  
Toshifumi Fujiwara ◽  
Jian Zhou ◽  
...  

Increased intracellular iron spurs mitochondrial biogenesis and respiration to satisfy high-energy demand during osteoclast differentiation and bone-resorbing activities. Transferrin receptor 1 (TFR1) mediates cellular iron uptake through endocytosis of iron-loaded transferrin and its expression increases during osteoclast differentiation. Nonetheless, the precise functions of TFR1 and TFR1-mediated iron uptake in osteoclast biology and skeletal homeostasis remain incompletely understood. To investigate the role of TFR1 in osteoclast lineage cells, we conditionally deleted Tfr1 gene in myeloid precursors or mature osteoclasts by crossing Tfr1-floxed mice with LysM-Cre and Ctsk-Cre mice, respectively. Skeletal phenotyping by μCT and histology unveiled that loss of Tfr1 in osteoclast progenitor cells resulted in a three-fold increase in trabecular bone mass in the long bones of 10-week old female but not male mice. Although high trabecular bone volume in long bones was seen in both male and female mice with deletion of Tfr1 in mature osteoclasts, this phenotype was more pronounced in female knockout mice. Mechanistically, disruption of Tfr1 expression attenuated mitochondrial metabolism and cytoskeletal organization in mature osteoclasts, leading to decreased bone resorption with no impact on osteoclastogenesis. These results indicate that Tfr1-mediated iron uptake is specifically required for osteoclast function and is indispensable for bone remodeling.


Author(s):  
Li Meihe ◽  
Gao Shan ◽  
Kang Minchao ◽  
Wu Xiaoling ◽  
An Peng ◽  
...  

One of the hallmarks of placental dysfunction is the increase of oxidative stress. This process, along with the overexpression of the inflammasome, creates a downward spiral that can lead to a series of severe pregnancy complications. Ferroptosis is a form of iron-mediated cell death involving the accumulation of reactive oxygen species, lipid peroxides. In this study, the rats’ model of oxidative stress abortion was established, and hydrogen peroxide (H2O2) was used to establish a cellular model of placental oxidative stress. RNAi, western blot, and immunofluorescence were used to evaluate the expression of specific markers of ferroptosis and the expression of the inflammasome in placental trophoblast cells. We observed excessive levels of ferroptosis and inflammasome activation in both rats’ model and placental trophoblast cell model of oxidative stress. When the NLRP1 inflammasome was silenced, the expression levels of GSH and Glutathione peroxidase 4 (GPX4) were increased, while the expression levels of transferrin receptor 1 (TFR1), acyl-CoA synthetase long-chain family member 4 (ACSL4), Superoxide dismutase (SOD), and Malondialdehyde (MDA) were decreased. However, when an NLRP1 activator was applied, we observed the opposite phenomenon. We further explored the mechanisms underlying the actions of ferroptosis to inflammasomes. The expression levels of NLRP1, NLRP3, IL-1β, and caspase-1 were positively correlated with the ferroptosis following the application of ferroptosis inhibitor (ferrostatin-1) and ferroptosis activator (erastin). The existence of ferroptosis was demonstrated in the oxidative stress model of placental trophoblast cells; the results also indicate ferroptosis is linked with the expression of NLRP1 inflammasome. These findings may provide a valuable therapeutic target for the pathogenesis of pregnancy-related diseases.


2021 ◽  
Author(s):  
Sol Ferrero ◽  
Maria D. Flores ◽  
Connor Short ◽  
Cecilia A. Vazquez ◽  
Lars E. Clark ◽  
...  

Pathogenic Clade B New World mammarenaviruses (NWM) can cause Argentine, Venezuelan, Brazilian, and Bolivian hemorrhagic fevers. Sequence variability among NWM glycoproteins (GP) poses a challenge to the development of broadly neutralizing therapeutics against the entire clade of viruses. However, blockade of their shared binding site on the apical domain of human Transferrin Receptor 1 (hTfR1/CD71) presents an opportunity for the development of effective and broadly neutralizing therapeutics. Here we demonstrate that the murine monoclonal antibody OKT9, which targets the apical domain of hTfR1, can sterically block cellular entry by viral particles presenting Clade B NWM glycoproteins (GP1-GP2). OKT9 blockade is also effective against viral particles pseudotyped with glycoproteins of a recently identified pathogenic Sabia-like virus. With nanomolar affinity for hTfR1, the OKT9 antigen binding fragment (OKT9-Fab) sterically blocks Clade B NWM-GP1s and reduces infectivity of an attenuated strain of Junin virus. Binding of OKT9 to the hTfR1 ectodomain in its soluble, dimeric state produces stable assemblies that are observable by negative stain electron microscopy. A model of the OKT9-sTfR1 complex, informed by the known crystallographic structure of sTfR1 and a newly determined structure of the OKT9 antigen binding fragment (Fab) suggests that OKT9 and the Machupo virus GP1 share a binding site on the hTfR1 apical domain. The structural basis for this interaction presents a framework for the design and development of high-affinity, broadly acting agents targeting Clade B NWMs. Importance Pathogenic Clade B NWMs cause grave infectious diseases: the South American hemorrhagic fevers. Their etiological agents are Junin (JUNV), Guanarito (GTOV), Sabiá (SABV), Machupo (MACV), Chapare (CHAV), and a new Sabiá-like (SABV-L) virus recently identified in Brazil. These are priority A pathogens due to their high infectivity and mortality, their potential of person-to-person transmission, and the limited availability of effective therapeutics and vaccines to curb their effects. While low homology between surface glycoproteins of NWMs foils efforts to develop broadly neutralizing therapies targeting NWMs, this work provides structural evidence that OKT9, a monoclonal antibody targeting a single NWM glycoprotein binding site on hTfR1, can efficiently prevent their entry into cells.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 954-954
Author(s):  
Jin-Seon Yook ◽  
Soonkyu Chung

Abstract Objectives Adipocytes are critical for keeping the whole-body energy balance by depositing energy into TG, secreting fatty acids, and burning energy into heat. We recently reported that iron metabolism in adipose tissue is regulated in a depot-specific manner, and plays an important role in thermogenesis. However, it is poorly understood whether adipocyte iron status alters systemic energy balance. This study aimed to investigate the metabolic impact of the adipocyte-specific deletion of transferrin receptor 1 (Tfr1), the single most critical iron transporter. Methods Adipocyte-specific Tfr1 knockout mice (ASKO) were generated by crossing the adiponectin-Cre transgenic mice with the Tfr1-floxed mice. The metabolic phenotypes of ASKO mice were characterized in basal level and high fat (HF)-fed status. The insulin sensitivity was assessed by glucose (GTT) and insulin tolerance test (ITT). To evaluate the thermogenic capacity, the mice were employed to the heat/cold cycle (31°C for 14 days to normalize the baseline, followed by at 4°C for 7 days). Results In the basal level, the targeted deletion of adipocyte Tfr1 resulted in the reductions in fat mass (p < 0.05) and the iron content (p < 0.01) both in the WAT and BAT, and the impairment of BAT development, including bleached color. ASKO displayed diminished thermogenic function (p < 0.05), but no overt metabolic adaptation was examined compared to the wildtype littermates. However, the HF-diet challenge instigated the glucose intolerance (p < 0.01), insulin resistance (p < 0.01), and hepatic TG content (p < 0.01) in the ASKO mice compared to wildtype without differences in body weight. Furthermore, the heat/cold cycle treatment in the ASKO caused 1) abolished beige fat formation, 2) augmented immune cell infiltration in WAT, 3) enlarged liver due to massive TG accumulation, and 4) elevated serum NEFA and cholesterol levels. Conclusions Dysregulation of adipocyte iron metabolism by deletion of Tfr1 significantly destroys the thermogenic capacity, leading to hepatic steatosis, insulin resistance, and dyslipidemia. Our works have revealed the metabolic contribution of adipose iron homeostasis to maintain systemic energy balance via thermogenic energy expenditure. Funding Sources National Institutes of Health Grant 1R21HD094273


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yuxiong Lu ◽  
Qing Yang ◽  
Yubin Su ◽  
Yin Ji ◽  
Guobang Li ◽  
...  

AbstractMYCN amplification is tightly associated with the poor prognosis of pediatric neuroblastoma (NB). The regulation of NB cell death by MYCN represents an important aspect, as it directly contributes to tumor progression and therapeutic resistance. However, the relationship between MYCN and cell death remains elusive. Ferroptosis is a newly identified cell death mode featured by lipid peroxide accumulation that can be attenuated by GPX4, yet whether and how MYCN regulates ferroptosis are not fully understood. Here, we report that MYCN-amplified NB cells are sensitive to GPX4-targeting ferroptosis inducers. Mechanically, MYCN expression reprograms the cellular iron metabolism by upregulating the expression of TFRC, which encodes transferrin receptor 1 as a key iron transporter on the cell membrane. Further, the increased iron uptake promotes the accumulation of labile iron pool, leading to enhanced lipid peroxide production. Consistently, TFRC overexpression in NB cells also induces selective sensitivity to GPX4 inhibition and ferroptosis. Moreover, we found that MYCN fails to alter the general lipid metabolism and the amount of cystine imported by System Xc(−) for glutathione synthesis, both of which contribute to ferroptosis in alternative contexts. In conclusion, NB cells harboring MYCN amplification are prone to undergo ferroptosis conferred by TFRC upregulation, suggesting that GPX4-targeting ferroptosis inducers or TFRC agonists can be potential strategies in treating MYCN-amplified NB.


Sign in / Sign up

Export Citation Format

Share Document