Pyramidal cell responses to γ-aminobutyric acid differ in type I and type II cortical dysplasia

2008 ◽  
Vol 86 (14) ◽  
pp. 3151-3162 ◽  
Author(s):  
Véronique M. André ◽  
Carlos Cepeda ◽  
Harry V. Vinters ◽  
My Huynh ◽  
Gary W. Mathern ◽  
...  
Epilepsia ◽  
2009 ◽  
Vol 50 (6) ◽  
pp. 1310-1335 ◽  
Author(s):  
Jason T. Lerner ◽  
Noriko Salamon ◽  
Jason S. Hauptman ◽  
Tonicarlo R. Velasco ◽  
Marta Hemb ◽  
...  

2021 ◽  
Author(s):  
Dulcie Lai ◽  
Meethila Gade ◽  
Edward Yang ◽  
Hyun Yong Koh ◽  
Nicole M. Walley ◽  
...  

Post-zygotically acquired genetic variants, or somatic variants, that arise during cortical development have emerged as important causes of focal epilepsies, particularly those due to malformations of cortical development. Pathogenic somatic variants have been identified in many genes within the PI3K-AKT3-mTOR-signaling pathway in individuals with hemimegalencephaly and focal cortical dysplasia (type II), and more recently in SLC35A2 in individuals with focal cortical dysplasia (type I) or non-dysplastic epileptic cortex. Given the expanding role of somatic variants across different brain malformations, we sought to delineate the landscape of somatic variants in a large cohort of patients who underwent epilepsy surgery with hemimegalencephaly or focal cortical dysplasia. We evaluated samples from 123 children with hemimegalencephaly (n=16), focal cortical dysplasia type I and related phenotypes (n=48), focal cortical dysplasia type II (n=44), or focal cortical dysplasia type III (n=15) classified using imaging and pathological findings. We performed high-depth exome sequencing in brain tissue-derived DNA from each case and identified somatic single nucleotide, indel, and large copy number variants. In 75% of individuals with hemimegalencephaly and 29% with focal cortical dysplasia type II, we identified pathogenic variants in PI3K-AKT-mTOR pathway genes. Four of 48 cases with focal cortical dysplasia type I (8%) had a likely pathogenic variant in SLC35A2. While no other gene had multiple disease-causing somatic variants across the focal cortical dysplasia type I cohort, four individuals in this group had a single pathogenic or likely pathogenic somatic variant in CASK, KRAS, NF1, and NIPBL, genes associated with neurodevelopmental disorders. No rare pathogenic or likely pathogenic somatic variants in any neurological disease genes like those identified in the focal cortical dysplasia type I cohort were found in 63 neurologically normal controls (P = 0.017), suggesting a role for these novel variants. We also identified a somatic loss-of-function variant in the known epilepsy gene, PCDH19, present in a very small number of alleles in the dysplastic tissue from a female patient with focal cortical dysplasia IIIa with hippocampal sclerosis. In contrast to focal cortical dysplasia type II, neither focal cortical dysplasia type I nor III had somatic variants in genes that converge on a unifying biological pathway, suggesting greater genetic heterogeneity compared to type II. Importantly, we demonstrate that FCD types I, II, and III, are associated with somatic gene variants across a broad range of genes, many associated with epilepsy in clinical syndromes caused by germline variants, as well as including some not previously associated with radiographically evident cortical brain malformations.


2021 ◽  
Author(s):  
Horst Urbach ◽  
Elias Kellner ◽  
Nico Kremers ◽  
Ingmar Blümcke ◽  
Theo Demerath

AbstractFocal cortical dysplasia (FCD) are histopathologically categorized in ILAE type I to III. Mild malformations of cortical development (mMCD) including those with oligodendroglial hyperplasia (MOGHE) are to be integrated into this classification yet. Only FCD type II have distinctive MRI and molecular genetics alterations so far. Subtle FCD including FCD type II located in the depth of a sulcus are often overlooked requiring the use of dedicated sequences (MP2RAGE, FLAWS, EDGE) and/or voxel (VBM)- or surface-based (SBM) postprocessing. The added value of 7 Tesla MRI has to be proven yet.


2009 ◽  
Vol 9 (4) ◽  
pp. 100-102 ◽  
Author(s):  
Theodore H. Schwartz

Incomplete Resection of Focal Cortical Dysplasia Is the Main Predictor of Poor Postsurgical Outcome. Krsek P, Maton B, Jayakar P, Dean P, Korman B, Rey G, Dunoyer C, Pacheco-Jacome E, Morrison G, Ragheb J, Vinters HV, Resnick T, Duchowny M. Neurology 2009;72(3):217–223. BACKGROUND: Focal cortical dysplasia (FCD) is recognized as the major cause of focal intractable epilepsy in childhood. Various factors influencing postsurgical seizure outcome in pediatric patients with FCD have been reported. OBJECTIVE: To analyze different variables in relation to seizure outcome in order to identify prognostic factors for selection of pediatric patients with FCD for epilepsy surgery. METHODS: A cohort of 149 patients with histologically confirmed mild malformations of cortical development or FCD with at least 2 years of postoperative follow-up was retrospectively studied; 113 subjects had at least 5 years of postoperative follow-up. Twenty-eight clinical, EEG, MRI, neuropsychological, surgical, and histopathologic parameters were evaluated. RESULTS: The only significant predictor of surgical success was completeness of surgical resection, defined as complete removal of the structural MRI lesion (if present) and the cortical region exhibiting prominent ictal and interictal abnormalities on intracranial EEG. Unfavorable surgical outcomes are mostly caused by overlap of dysplastic and eloquent cortical regions. There were nonsignificant trends toward better outcomes in patients with normal intelligence, after hemispherectomy and with FCD type II. Other factors such as age at seizure onset, duration of epilepsy, seizure frequency, associated pathologies including hippocampal sclerosis, extent of EEG and MRI abnormalities, as well as extent and localization of resections did not influence outcome. Twenty-five percent of patients changed Engel's class of seizure outcome after the second postoperative year. CONCLUSIONS: The ability to define and fully excise the entire region of dysplastic cortex is the most powerful variable influencing outcome in pediatric patients with focal cortical dysplasia. FDG-PET/MRI Coregistration Improves Detection of Cortical Dysplasia in Patients with Epilepsy. Salamon N, Kung J, Shaw SJ, Koo J, Koh S, Wu JY, Lerner JT, Sankar R, Shields WD, Engel J Jr, Fried I, Miyata H, Yong WH, Vinters HV, Mathern GW. Neurology 2008;71(20):1594–1601. OBJECTIVE: Patients with cortical dysplasia (CD) are difficult to treat because the MRI abnormality may be undetectable. This study determined whether fluorodeoxyglucose (FDG)-PET/MRI coregistration enhanced the recognition of CD in epilepsy surgery patients. METHODS: Patients from 2004–2007 in whom FDG-PET/MRI coregistration was a component of the presurgical evaluation were compared with patients from 2000–2003 without this technique. For the 2004–2007 cohort, neuroimaging and clinical variables were compared between patients with mild Palmini type I and severe Palmini type II CD. RESULTS: Compared with the 2000–2003 cohort, from 2004–2007 more CD patients were detected, most had type I CD, and fewer cases required intracranial electrodes. From 2004–2007, 85% of type I CD cases had normal non–University of California, Los Angeles (UCLA) MRI scans. UCLA MRI identified CD in 78% of patients, and 37% of type I CD cases had normal UCLA scans. EEG and neuroimaging findings were concordant in 52% of type I CD patients, compared with 89% of type II CD patients. FDG-PET scans were positive in 71% of CD cases, and type I CD patients had less hypometabolism compared with type II CD patients. Postoperative seizure freedom occurred in 82% of patients, without differences between type I and type II CD cases. CONCLUSIONS: Incorporating fluorodeoxyglucose-PET/MRI coregistration into the multimodality presurgical evaluation enhanced the noninvasive identification and successful surgical treatment of patients with cortical dysplasia (CD), especially for the 33% of patients with nonconcordant findings and those with normal MRI scans from mild type I CD.


Epilepsia ◽  
2010 ◽  
Vol 51 ◽  
pp. 166-170 ◽  
Author(s):  
Véronique M. André ◽  
Carlos Cepeda ◽  
Harry V. Vinters ◽  
My Huynh ◽  
Gary W. Mathern ◽  
...  

2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 6-7
Author(s):  
A Zhang ◽  
Y Pang ◽  
S Menzies ◽  
L M Sly

Abstract Background Intestinal epithelial cells may actively regulate homeostasis by recognizing and responding to extracellular signals. One of these cell types, tuft cells, has been proposed to have a role in secretion, absorption, and reception. However, their role in the intestine has not been fully characterized. We have found that tuft cells express the SH2 domain-containing inositol 5’-phosphatase (SHIP), which was formerly thought to be restricted to hematopoietic cells. SHIP negatively regulates PI3K-mediated cell growth, proliferation, and activation. Tuft cells secrete IL-25, which activates group 2 innate lymphoid cells (ILC2s), leading to type 2 immune responses. Tuft cells may contribute to inflammation in the intestine by increasing ILC2 numbers and/or activation, leading to type II inflammation. Aims My hypothesis is that SHIP inhibits tuft cell responses to innate immune stimuli by limiting PI3K activation. Moreover, SHIP deficiency will increase tuft cell responses to commensal microbes, causing ILC2-mediated type II inflammation. To investigate the role of SHIP in tuft cell responses in vivo, I will use a tuft cell-specific SHIP deficient mouse in the dextran sodium sulfate (DSS)-induced colitis model. Methods We created a mouse deficient in SHIP only in intestinal tuft cells (Fabpcre x SHIPfl/fl) to investigate the impact of SHIP deficiency in tuft cells on responses to luminal microbes. Tuft cell-specific SHIP deficient mice (8-week-old) and their wild type littermates were subjected to DSS-induced colitis for 7 days. Clinical disease activity was monitored daily and gross pathology, including total colon length, was examined at the experimental endpoint. The concentrations of pro-inflammatory type I and type II cytokines were assessed in colonic tissue homogenates via ELISA. Results During DSS-induced colitis, mice with SHIP deficient tuft cells had increased disease activity compared to their wild type littermates, particularly evident in their weight loss. Mice with SHIP deficient tuft cells also had significantly shorter colons than their wild type littermates. IL-25 concentrations (produced by tuft cells) were increased in full thickness colon homogenates from mice with SHIP deficient tuft cells. In contrast, pro-inflammatory cytokines IL-1β, IL-6, and TNF did not differ between genotypes. Thus, increased tuft cell activity due to SHIP deficiency correlated with increased disease severity during DSS-induced colitis. Conclusions SHIP deficiency in intestinal tuft cells leads to increased tuft cell activity and exacerbated colitis during DSS treatment. Tuft cells may contribute to inflammation via IL-25 production, leading to increased type II inflammation by ILC2s. In future studies, we will target IL-25 in this model to determine whether increased tuft cell IL-25 production plays a causal role in disease exacerbation. Funding Agencies NSERC


1993 ◽  
Vol 70 (1) ◽  
pp. 263-274 ◽  
Author(s):  
P. I. Ezeh ◽  
D. P. Wellis ◽  
J. W. Scott

1. Intracellular recordings were made from the output neurons (mitral and tufted cells) of the rat olfactory bulb during electrical orthodromic stimulation of the olfactory nerve layer (ONL) and antidromic stimulation of the lateral olfactory tract and posterior piriform cortex (pPC) to test for physiological differences among the neuron types. Many of these neurons were identified by intracellular injections of biocytin, and others were identified by their pattern of antidromic activation. 2. Both marked and unmarked mitral cells showed large inhibitory postsynaptic potentials (IPSPs) in response to antidromic stimulation of the pPC, whereas tufted cells exhibited small IPSPs in response to pPC stimulation. Tufted cells, however, showed large IPSPs in response to ONL stimulation. In many cases, these tufted cell responses to ONL stimulation were larger than the mitral cell responses. The marked superficial tufted cells, those with basal dendrites in the superficial sublayer of the external plexiform layer (EPL), had the smallest IPSPs in response to pPC stimulation. These data support anatomic observations suggesting that the granule cell populations responsible for the IPSPs may be different for mitral and for superficial tufted cells. 3. The different types of output cells also showed differences in their responses to orthodromic stimulation. Type I mitral cells, which have basal dendrites confined to the deep sublayer of the EPL, were significantly less excitable by ONL stimulation than were the type II mitral cells, which have basal dendrites distributed within the intermediate sublayer of the EPL. Half of the type I mitral cells could not be excited at all by ONL stimulation. Superficial tufted cells showed even greater orthodromic excitability than type II mitral cells, usually responding to ONL stimulation with two or more spikes. 4. The ionic basis of the IPSPs in the superficial tufted cells appeared similar to those described for mitral cells. These IPSPs could be reversed by chloride injection and were associated with increased membrane conductance. 5. For both mitral and tufted cells, the number of ONL electrodes evoking IPSPs was greater than the number evoking spikes. These data suggest a kind of center-surround organization of inputs to these cells from the ONL, although this does not yet imply that the sensory receptive field of these output cells has a center-surround organization. 6. In conclusion, the properties of rat olfactory bulb output cells correlate with the sublayers of the EPL in which their basal dendrites lie.(ABSTRACT TRUNCATED AT 400 WORDS)


Oncotarget ◽  
2016 ◽  
Vol 7 (47) ◽  
pp. 76415-76422 ◽  
Author(s):  
Kun Yao ◽  
Zejun Duan ◽  
Jian Zhou ◽  
Lin Li ◽  
Feng Zhai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document