tuft cell
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 58)

H-INDEX

13
(FIVE YEARS 7)

Biology Open ◽  
2022 ◽  
Author(s):  
Takuma Kozono ◽  
Miwa Tamura-Nakano ◽  
Yuki I. Kawamura ◽  
Takashi Tonozuka ◽  
Atsushi Nishikawa

Tuft cell is a chemosensory cell, a specific cell type sharing the taste transduction system with a taste cell on the tongue, of which the existence has been known in various tissues such as gastrointestinal tract, gall bladder, trachea, pancreatic duct, etc. To date, electron microscopic approaches have shown various morphological features of the tuft cell such as long and thick microvilli, tubulovesicular network at the apical side, prominent skeleton structures, etc. Recently, it has been reported that the small intestinal tuft cell functions to initiate type2 immunity in response to helminth infection. However, the mechanisms by which such distinguished structures are involved with the physiological functions are poorly understood. To address this question, the combination of physiological study regarding the tuft cells using genetic models and its morphological study using electron microscopy will be required. However, it is a challenge to observe tuft cells by electron microscopy due to their extremely low frequency on the epithelium. Therefore, in this paper, we suggest the advanced protocol to observe the small intestinal tuft cell efficiently by transmission electron microscopy using serial semi-thin sections on the Aclar film.


2021 ◽  
Vol 6 (66) ◽  
Author(s):  
Saltanat Ualiyeva ◽  
Evan Lemire ◽  
Evelyn C. Aviles ◽  
Caitlin Wong ◽  
Amelia A. Boyd ◽  
...  

2021 ◽  
Author(s):  
Alejandra González-Loyola ◽  
Tania Wyss ◽  
Olivia Munoz ◽  
Borja Prat-Luri ◽  
Mauro Delorenzi ◽  
...  

AbstractSmall intestinal villi are structural and functional units uniquely adapted to the nutrient absorption in higher vertebrates. Villus enterocytes are organized in spatially resolved “zones” dedicated to specialized tasks such anti-bacterial protection, and absorption of amino-acids, carbohydrates and lipids. The molecular mechanisms specifying villus zonation are incompletely understood. We report that inactivation of transcription factor c-MAF, highly expressed in mature lower and mid-villus enterocytes, perturbed the entire villus zonation program, by increasing the expression of regulators of carbohydrate and bile acid metabolism and transport, while suppressing genes related to amino acid and lipid absorption. Maf inactivation under homeostatic conditions expanded tuft cells and led to compensatory gut lengthening, preventing body weight loss. However, delayed enterocyte maturation in the absence of Maf impaired body weight recovery after acute intestinal injury, resulting in reduced survival. Our results identify c-MAF as a novel regulator of small intestinal villus zonation program, while highlighting the importance of coordination between stem/progenitor and differentiation programs for intestinal regeneration.Summaryc-MAF is expressed in differentiated enterocytes. c-MAF loss alters enterocyte zonation leading to a compensatory gut remodelling and tuft cell expansion. Upon acute intestinal injury mice deficient for c-MAF cannot recover due to lack of nutrient transport and compensatory lengthening.


Gut ◽  
2021 ◽  
pp. gutjnl-2021-324984
Author(s):  
Tianyun Long ◽  
Nazia Abbasi ◽  
Juan E Hernandez ◽  
Yuxin Li ◽  
Ibrahim M Sayed ◽  
...  

ObjectiveTuft cells residing in the intestinal epithelium have diverse functions. In the small intestine, they provide protection against inflammation, combat against helminth and protist infections, and serve as entry portals for enteroviruses. In the colon, they had been implicated in tumourigenesis. Commitment of intestinal progenitor cells to the tuft cell lineage requires Rho GTPase Cell Division Cycle 42 (CDC42), a Rho GTPase that acts downstream of the epidermal growth factor receptor and wingless-related integration site signalling cascades, and the master transcription factor POU class 2 homeobox 3 (POU2F3). This study investigates how this pathway is regulated by the DEAD box containing RNA binding protein DDX5 in vivo.DesignWe assessed the role of DDX5 in tuft cell specification and function in control and epithelial cell-specific Ddx5 knockout mice (DDX5ΔIEC) using transcriptomic approaches.ResultsDDX5ΔIEC mice harboured a loss of intestinal tuft cell populations, modified microbial repertoire, and altered susceptibilities to ileal inflammation and colonic tumourigenesis. Mechanistically, DDX5 promotes CDC42 protein synthesis through a post-transcriptional mechanism to license tuft cell specification. Importantly, the DDX5-CDC42 axis is parallel but distinct from the known interleukin-13 circuit implicated in tuft cell hyperplasia, and both pathways augment Pou2f3 expression in secretory lineage progenitors. In mature tuft cells, DDX5 not only promotes integrin signalling and microbial responses, it also represses gene programmes involved in membrane transport and lipid metabolism.ConclusionRNA binding protein DDX5 directs tuft cell specification and function to regulate microbial repertoire and disease susceptibility in the intestine.


2021 ◽  
Vol 12 ◽  
Author(s):  
Katie A. Hildersley ◽  
Tom N. McNeilly ◽  
Victoria Gillan ◽  
Thomas D. Otto ◽  
Stephan Löser ◽  
...  

Helminth parasite infections of humans and livestock are a global health and economic problem. Resistance of helminths to current drug treatment is an increasing problem and alternative control approaches, including vaccines, are needed. Effective vaccine design requires knowledge of host immune mechanisms and how these are stimulated. Mouse models of helminth infection indicate that tuft cells, an unusual type of epithelial cell, may ‘sense’ infection in the small intestine and trigger a type 2 immune response. Currently nothing is known of tuft cells in immunity in other host species and in other compartments of the gastrointestinal (GI) tract. Here we address this gap and use immunohistochemistry and single cell RNA-sequencing to detail the presence and gene expression profile of tuft cells in sheep following nematode infections. We identify and characterize tuft cells in the ovine abomasum (true stomach of ruminants) and show that they increase significantly in number following infection with the globally important nematodes Teladorsagia circumcincta and Haemonchus contortus. Ovine abomasal tuft cells show enriched expression of tuft cell markers POU2F3, GFI1B, TRPM5 and genes involved in signaling and inflammatory pathways. However succinate receptor SUCNR1 and free fatty acid receptor FFAR3, proposed as ‘sensing’ receptors in murine tuft cells, are not expressed, and instead ovine tuft cells are enriched for taste receptor TAS2R16 and mechanosensory receptor ADGRG6. We also identify tuft cell sub-clusters at potentially different stages of maturation, suggesting a dynamic process not apparent from mouse models of infection. Our findings reveal a tuft cell response to economically important parasite infections and show that while tuft cell effector functions have been retained during mammalian evolution, receptor specificity has diverged. Our data advance knowledge of host-parasite interactions in the GI mucosa and identify receptors that may potentiate type 2 immunity for optimized control of parasitic nematodes.


2021 ◽  
Vol 219 (1) ◽  
Author(s):  
Claire Drurey ◽  
Håvard T. Lindholm ◽  
Gillian Coakley ◽  
Marta Campillo Poveda ◽  
Stephan Löser ◽  
...  

Helminth parasites are adept manipulators of the immune system, using multiple strategies to evade the host type 2 response. In the intestinal niche, the epithelium is crucial for initiating type 2 immunity via tuft cells, which together with goblet cells expand dramatically in response to the type 2 cytokines IL-4 and IL-13. However, it is not known whether helminths modulate these epithelial cell populations. In vitro, using small intestinal organoids, we found that excretory/secretory products (HpES) from Heligmosomoides polygyrus blocked the effects of IL-4/13, inhibiting tuft and goblet cell gene expression and expansion, and inducing spheroid growth characteristic of fetal epithelium and homeostatic repair. Similar outcomes were seen in organoids exposed to parasite larvae. In vivo, H. polygyrus infection inhibited tuft cell responses to heterologous Nippostrongylus brasiliensis infection or succinate, and HpES also reduced succinate-stimulated tuft cell expansion. Our results demonstrate that helminth parasites reshape their intestinal environment in a novel strategy for undermining the host protective response.


2021 ◽  
Vol 118 (45) ◽  
pp. e2112814118
Author(s):  
Carolyn Bomidi ◽  
Matthew Robertson ◽  
Cristian Coarfa ◽  
Mary K. Estes ◽  
Sarah E. Blutt

Intestinal epithelial damage is associated with most digestive diseases and results in detrimental effects on nutrient absorption and production of hormones and antimicrobial defense molecules. Thus, understanding epithelial repair and regeneration following damage is essential in developing therapeutics that assist in rapid healing and restoration of normal intestinal function. Here we used a well-characterized enteric virus (rotavirus) that damages the epithelium at the villus tip but does not directly damage the intestinal stem cell, to explore the regenerative transcriptional response of the intestinal epithelium at the single-cell level. We found that there are specific Lgr5+ cell subsets that exhibit increased cycling frequency associated with significant expansion of the epithelial crypt. This was accompanied by an increase in the number of immature enterocytes. Unexpectedly, we found rotavirus infects tuft cells. Transcriptional profiling indicates tuft cells respond to viral infection through interferon-related pathways. Together these data provide insights as to how the intestinal epithelium responds to insults by providing evidence of stimulation of a repair program driven by stem cells with involvement of tuft cells that results in the production of immature enterocytes that repair the damaged epithelium.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaodong Yuan ◽  
Lei Huang ◽  
Wenwu Luo ◽  
Yufei Zhao ◽  
Björn Nashan ◽  
...  

BackgroundThymic epithelial tumors (TETs) are rare tumors originating from the thymic epithelial cells. SOX9, a member of the family of SOX (SRY-related high-mobility group box) genes, has been considered as an oncogene and therapeutic target in various cancers. However, its role in TETs remains uncertain.MethodsUsing the immunohistochemistry method, the expression of SOX9 was analyzed in TETs tissues, including 34 thymoma (8 cases with type A, 6 with type AB, 6 with type B1, 9 with type B2, and 5 with type B3 thymomas) and 20 thymic cancer tissues and the clinicopathologic and prognostic significances were evaluated. Further bioinformatics analysis of gene expression profiles of thymomas with high and low SOX9 expressions and the corresponding survival analyses were based on the thymoma cases identified in The Cancer Genome Atlas (TCGA) database, with the median expression level of SOX9 selected as cutoff.ResultsImmunohistochemistry staining showed that SOX9 was highly expressed in the nuclei of the epithelial cells of the Hassall’s corpuscles and of the TET tumor cells. SOX9 expression was significantly associated with histological type and high expression indicated unfavorable clinical outcomes of thymomas. Bioinformatics analysis revealed that genes positively associated with SOX9 expression were mapped in proteoglycans in cancer, cell adhesion molecules, and molecules involved in extracellular matrix-receptor interaction and the TGF-β signaling pathway, and that genes negatively associated with SOX9 expression were mapped in molecules involved in primary immunodeficiency, the T cell receptor signaling pathway, Th17 cell differentiation, PD-L1 expression, and the PD-1 checkpoint pathway in cancer. In addition, SOX9 expression was positively associated with POU2F3 and TRPM5 expressions, the master regulators of tuft cells, suggesting that high SOX9 expression might be associated with the tuft cell phenotype of thymomas. Moreover, high SOX9 expression was associated with immune dysregulation of thymoma, and M2 macrophage significantly dominated in the high SOX9 expression group.ConclusionSOX9 may serve as a diagnostic and prognostic marker for TETs. Notably, high SOX9 expression in TETs may indicate a tuft cell phenotype and an immune suppressive microenvironment of thymomas.


Author(s):  
Christoph Schneider

AbstractChemosensory processes are integral to the physiology of most organisms. This function is typically performed by specialized cells that are able to detect input signals and to convert them to an output dedicated to a particular group of target cells. Tuft cells are cholinergic chemosensory epithelial cells capable of producing immunologically relevant effector molecules. They are scattered throughout endoderm-derived hollow organs and function as sensors of luminal stimuli, which has been best studied in mucosal barrier epithelia. Given their epithelial origin and broad distribution, and based on their interplay with immune pathways, tuft cells can be considered a prototypical example of how complex multicellular organisms engage innate immune mechanisms to modulate and optimize organ physiology. In this review, I provide a concise overview of tuft cells and discuss how these cells influence organ adaptation to dynamic luminal conditions.


2021 ◽  
Author(s):  
Saltanat Ualiyeva ◽  
Evan R Lemire ◽  
Amelia Boyd ◽  
Caitlin Wong ◽  
Juying Lai ◽  
...  

Aeroallergen sensing by airway epithelial cells can trigger pathogenic immune responses leading to chronic type 2 inflammation, the hallmark of airway diseases such as asthma. Airway tuft cells are specialized chemosensory epithelial cells and the dominant source of the epithelial cytokine IL-25 in the trachea and of cysteinyl leukotrienes (CysLTs) in the naive murine nasal mucosa. The interaction of IL-25 and CysLTs and the contribution of tuft cell-derived CysLTs to the development of allergen-triggered inflammation in the airways has not been clarified. Here we show that inhalation of LTC4 in combination with a subthreshold dose of IL25 leads to dramatic synergistic induction of type 2 inflammation throughout the lungs, causing rapid eosinophilia, dendritic cell (DC) and inflammatory type 2 innate lymphoid cell (ILC2) expansion, and goblet cell metaplasia. While lung eosinophilia is dominantly mediated through the classical CysLT receptor CysLT1R, type 2 cytokines and activation of innate immune cells require signaling through both CysLT1R and CysLT2R. Tuft cell-specific deletion of the terminal enzyme requisite for CysLT production, Ltc4s, was sufficient to reduce both the innate immune response in the lung: eosinophilia, ILC2 activation and DC recruitment, and the systemic immune response in the draining lymph nodes after inhalation of the mold aeroallergen Alternaria. Our findings identify surprisingly potent synergy of CysLTs and IL-25 downstream of aeroallergen-trigged activation of airway tuft cells leading to a highly polarized type 2 immune response and further implicate airway tuft cells as powerful modulators of type 2 immunity in the lungs.


Sign in / Sign up

Export Citation Format

Share Document