scholarly journals Selective reduction in microglia density and function in the white matter of colony-stimulating factor-1-deficient mice

2009 ◽  
Vol 87 (12) ◽  
pp. 2686-2695 ◽  
Author(s):  
Yoichi Kondo ◽  
Ian D. Duncan
1996 ◽  
Vol 270 (4) ◽  
pp. L650-L658 ◽  
Author(s):  
M. Ikegami ◽  
T. Ueda ◽  
W. Hull ◽  
J. A. Whitsett ◽  
R. C. Mulligan ◽  
...  

Mice made granulocyte macrophage-colony stimulating factor (GM-CSF)-deficient by homologous recombination maintain normal steady-state hematopoiesis but have an alveolar accumulation of surfactant lipids and protein that is similar to pulmonary alveolar proteinosis in humans. We asked how GM-CSF deficiency alters surfactant metabolism and function in mice. Alveolar and lung tissue saturated phosphatidylcholine (Sat PC) were increased six- to eightfold in 7- to 9-wk-old GM-CSF-deficient mice relative to controls. Incorporation of radiolabeled palmitate and choline into Sat PC was higher in GM-CSF deficient mice than control mice, and no loss of labeled Sat PC occurred from the lungs of GM-CSF-deficient mice. Secretion of radiolabeled Sat PC to the alveolus was similar in GM-CSF-deficient and control mice. Labeled Sat PC and surfactant protein A (SP-A) given by tracheal instillation were cleared rapidly in control mice, but there was no measurable loss from the lungs of GM-CSF-deficient mice. The function of the surfactant from GM-CSF-deficient mice was normal when tested in preterm surfactant-deficient rabbits. GM-CSF deficiency results in a catabolic defect for Sat PC and SP-A.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 27-35 ◽  
Author(s):  
GJ Lieschke ◽  
E Stanley ◽  
D Grail ◽  
G Hodgson ◽  
V Sinickas ◽  
...  

Abstract Mice deficient in granulocyte-macrophage colony-stimulating factor (GM- CSF) and macrophage colony-stimulating factor (M-CSF, CSF-1) were generated by interbreeding GM-CSF-deficient mice generated by gene targeting (genotype GM-/-) with M-CSF-deficient osteopetrotic mice (genotype M-/-, op/op). Mice deficient in both GM-CSF and M-CSF (genotype GM-/-M-/-) are viable and have coexistent features corresponding to mice deficient in either factor alone. Like M-CSF- deficient mice, they have osteopetrosis and are toothless because of failure of incisor eruption. Like GM-CSF-deficient mice, they have a characteristic alveolar-proteinosis-like lung pathology, but it is more severe than that of GM-CSF-deficient mice and is often fatal. In particular, in GM-/-M-/- mice the accumulation of lipo-proteinaceous alveolar material is more marked, and bacterial pneumonic infections are more prevalent and more extensive, particularly involving Gram- negative bacteria. Neutrophilia consistently accompanies pulmonary infections, and some older GM-/-M-/- mice have polycythemia. Survival of GM-/-M-/- mice is significantly reduced compared with mice deficient in either factor alone, and all GM-/-M-/- mice have broncho- or lobar- pneumonia at death. These observations indicate that in vivo, M-CSF is involved in modulating the consequences of GM-CSF deficiency in the lung. Interestingly, GM-/-M-/- mice have circulating monocytes at levels comparable with those in M-CSF-deficient mice and the diseased lungs of all GM-/-M-/- mice contain numerous phagocytically active macrophages, indicating that in addition to GM-CSF and M-CSF, other factors can be used for macrophage production and function in vivo.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 27-35 ◽  
Author(s):  
GJ Lieschke ◽  
E Stanley ◽  
D Grail ◽  
G Hodgson ◽  
V Sinickas ◽  
...  

Mice deficient in granulocyte-macrophage colony-stimulating factor (GM- CSF) and macrophage colony-stimulating factor (M-CSF, CSF-1) were generated by interbreeding GM-CSF-deficient mice generated by gene targeting (genotype GM-/-) with M-CSF-deficient osteopetrotic mice (genotype M-/-, op/op). Mice deficient in both GM-CSF and M-CSF (genotype GM-/-M-/-) are viable and have coexistent features corresponding to mice deficient in either factor alone. Like M-CSF- deficient mice, they have osteopetrosis and are toothless because of failure of incisor eruption. Like GM-CSF-deficient mice, they have a characteristic alveolar-proteinosis-like lung pathology, but it is more severe than that of GM-CSF-deficient mice and is often fatal. In particular, in GM-/-M-/- mice the accumulation of lipo-proteinaceous alveolar material is more marked, and bacterial pneumonic infections are more prevalent and more extensive, particularly involving Gram- negative bacteria. Neutrophilia consistently accompanies pulmonary infections, and some older GM-/-M-/- mice have polycythemia. Survival of GM-/-M-/- mice is significantly reduced compared with mice deficient in either factor alone, and all GM-/-M-/- mice have broncho- or lobar- pneumonia at death. These observations indicate that in vivo, M-CSF is involved in modulating the consequences of GM-CSF deficiency in the lung. Interestingly, GM-/-M-/- mice have circulating monocytes at levels comparable with those in M-CSF-deficient mice and the diseased lungs of all GM-/-M-/- mice contain numerous phagocytically active macrophages, indicating that in addition to GM-CSF and M-CSF, other factors can be used for macrophage production and function in vivo.


2006 ◽  
Vol 186 (2) ◽  
pp. 282-290 ◽  
Author(s):  
Fjoralba Babamusta ◽  
Debra L. Rateri ◽  
Jessica J. Moorleghen ◽  
Deborah A. Howatt ◽  
Xiang-An Li ◽  
...  

Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2583-2590 ◽  
Author(s):  
Fulu Liu ◽  
Jennifer Poursine-Laurent ◽  
Huai Yang Wu ◽  
Daniel C. Link

Multiple hematopoietic cytokines can stimulate granulopoiesis; however, their relative importance in vivo and mechanisms of action remain unclear. We recently reported that granulocyte colony-stimulating factor receptor (G-CSFR)-deficient mice have a severe quantitative defect in granulopoiesis despite which phenotypically normal neutrophils were still detected. These results confirmed a role for the G-CSFR as a major regulator of granulopoiesis in vivo, but also indicated that G-CSFR independent mechanisms of granulopoiesis must exist. To explore the role of interleukin-6 (IL-6) in granulopoiesis, we generated IL-6 × G-CSFR doubly deficient mice. The additional loss of IL-6 significantly worsened the neutropenia present in young adult G-CSFR–deficient mice; moreover, exogenous IL-6 stimulated granulopoiesis in vivo in the absence of G-CSFR signals. Near normal numbers of myeloid progenitors were detected in the bone marrow of IL-6 × G-CSFR–deficient mice and their ability to terminally differentiate into mature neutrophils was observed. These results indicate that IL-6 is an independent regulator of granulopoiesis in vivo and show that neither G-CSFR or IL-6 signals are required for the commitment of multipotential progenitors to the myeloid lineage or for their terminal differentiation.


2013 ◽  
Vol 82 (3) ◽  
pp. 1315-1325 ◽  
Author(s):  
Lauren M. Lilly ◽  
Michaella Scopel ◽  
Michael P. Nelson ◽  
Ashley R. Burg ◽  
Chad W. Dunaway ◽  
...  

ABSTRACTExposure to the moldAspergillus fumigatusmay result in allergic bronchopulmonary aspergillosis, chronic necrotizing pulmonary aspergillosis, or invasive aspergillosis (IA), depending on the host's immune status. Neutrophil deficiency is the predominant risk factor for the development of IA, the most life-threatening condition associated withA. fumigatusexposure. Here we demonstrate that in addition to neutrophils, eosinophils are an important contributor to the clearance ofA. fumigatusfrom the lung. AcuteA. fumigatuschallenge in normal mice induced the recruitment of CD11b+Siglec F+Ly-6GloLy-6CnegCCR3+eosinophils to the lungs, which was accompanied by an increase in lungEpx(eosinophil peroxidase) mRNA levels. Mice deficient in the transcription factor dblGATA1, which exhibit a selective deficiency in eosinophils, demonstrated impairedA. fumigatusclearance and evidence of germinating organisms in the lung. Higher burden correlated with lower mRNA expression ofEpx(eosinophil peroxidase) andPrg2(major basic protein) as well as lower interleukin 1β (IL-1β), IL-6, IL-17A, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and CXCL1 levels. However, examination of lung inflammatory cell populations failed to demonstrate defects in monocyte/macrophage, dendritic cell, or neutrophil recruitment in dblGATA1-deficient mice, suggesting that the absence of eosinophils in dlbGATA1-deficient mice was the sole cause of impaired lung clearance. We show that eosinophils generated from bone marrow have potent killing activity againstA. fumigtausin vitro, which does not require cell contact and can be recapitulated by eosinophil whole-cell lysates. Collectively, our data support a role for eosinophils in the lung response afterA. fumigatusexposure.


Blood ◽  
1993 ◽  
Vol 82 (8) ◽  
pp. 2478-2484 ◽  
Author(s):  
KR Schibler ◽  
KW Liechty ◽  
WL White ◽  
RD Christensen

Abstract We postulated that defective generation of granulocyte colony- stimulating factor (G-CSF) by cells of newborn infants might underlie their deficiencies in upregulating neutrophil production and function during bacterial infection. To test this, we isolated monocytes from the blood of preterm neonates, term neonates, and adults and, after stimulation with various concentrations of interleukin-1 alpha (IL-1 alpha) or lipopolysaccharide (LPS), quantified G-CSF concentrations in cell supernatants and G-CSF mRNA in cell lysates. When stimulated with plateau concentrations of IL-1 alpha for 24 hours, G-CSF concentrations were higher in supernatants of adult cells (8,699 +/- 5,529 pg/10(6) monocytes) than in those from term infants (2,557 +/- 442 pg, P < .05) or from preterm infants (879 +/- 348 pg, P < .05 v adults). When stimulated with plateau concentrations of LPS, supernatants of monocytes from preterm neonates had less G-CSF than did those from term neonates or adults. G-CSF mRNA content was low in cells from preterm infants, higher in those from term infants, and highest in those from adults. On the basis of the in vitro studies, we speculated that serum G-CSF concentrations might be less elevated in neutropenic neonates than in neutropenic adults. Indeed, serum concentrations were relatively low in all nonneutropenic subjects; 92 +/- 34 pg/mL (mean +/- SEM) in 10 preterm neonates, 114 +/- 21 pg/mL in 16 term neonates, and 45 +/- 13 pg/mL in 11 healthy adults. Serum concentrations were not elevated in 7 neutropenic neonates (39 +/- 17 pg/mL) but were in 8 neutropenic adults (2101 +/- 942 pg/mL, P < .05 v healthy adults). Other studies suggested that the lower G-CSF production in neonates is not counterbalanced by a heightened sensitivity of G-CSF--responsive progenitors to G-CSF. Therefore, we speculate that newborn infants, particularly those delivered prematurely, generate comparatively low quantities of G-CSF after inflammatory stimulation, and that this might constitute part of the explanation for their defective upregulation of neutrophil production and function during infection.


Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3265-3272 ◽  
Author(s):  
JM Kerst ◽  
M de Haas ◽  
CE van der Schoot ◽  
IC Slaper-Cortenbach ◽  
M Kleijer ◽  
...  

Abstract We performed a detailed kinetic study on the in vivo effect of a single subcutaneous dose of granulocyte colony-stimulating factor (G-CSF; 300 micrograms) in four healthy individuals on the expression and function of neutrophil Fc gamma receptors (Fc gamma R). G-CSF did not induce Fc gamma RI (CD64) on circulating neutrophils. However, neutrophils newly formed in response to G-CSF were Fc gamma RI positive and were able to perform antibody-dependent cellular cytotoxicity in an Fc gamma RI- dependent way. Fc gamma RII (CD32) expression was not changed significantly. Fc gamma RIII (CD16, phosphatidylinositol-linked) expression, slightly increased immediately (30 minutes) postinjection, was found to be strongly decreased on the newly formed population. For comparison, we studied the expression of the PI-linked proteins leukocyte alkaline phosphatase (LAP) and CD14. Intracellular levels of LAP mirrored the biphasic expression pattern as membrane-bound Fc gamma RIII. In contrast, CD14 expression on neutrophils was initially constant, followed by high levels on the newly formed neutrophils. Soluble CD14 levels were found to be elevated transiently, whereas peak levels of soluble Fc gamma III were observed as late as 6 days postinjection. In conclusion, we have shown that G-CSF results in an immunophenotypically and functionally altered neutrophil population for an important part as a result of its effect on myeloid precursor cells.


2020 ◽  
Vol 105 ◽  
pp. 103586 ◽  
Author(s):  
Zhiguang Wu ◽  
Rakhi Harne ◽  
Cosmin Chintoan-Uta ◽  
Tuan-Jun Hu ◽  
Robert Wallace ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document