The impact of Indian Ocean dipole on tropical Indian Ocean surface wave heights in ERA5 and CMIP5 models

Author(s):  
Gangiredla Srinivas ◽  
P. G. Remya ◽  
B. Praveen Kumar ◽  
Anuradha Modi ◽  
T. M. Balakrishnan Nair



2013 ◽  
Vol 26 (17) ◽  
pp. 6649-6659 ◽  
Author(s):  
Evan Weller ◽  
Wenju Cai

Abstract An assessment of how well climate models simulate the Indian Ocean dipole (IOD) is undertaken using 20 coupled models that have partaken in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Compared with models in phase 3 (CMIP3), no substantial improvement is evident in the simulation of the IOD pattern and/or amplitude during austral spring [September–November (SON)]. The majority of models in CMIP5 generate a larger variance of sea surface temperature (SST) in the Sumatra–Java upwelling region and an IOD amplitude that is far greater than is observed. Although the relationship between precipitation and tropical Indian Ocean SSTs is well simulated, future projections of SON rainfall changes over IOD-influenced regions are intrinsically linked to the IOD amplitude and its rainfall teleconnection in the model present-day climate. The diversity of the simulated IOD amplitudes in models in CMIP5 (and CMIP3), which tend to be overly large, results in a wide range of future modeled SON rainfall trends over IOD-influenced regions. The results herein highlight the importance of realistically simulating the present-day IOD properties and suggest that caution should be exercised in interpreting climate projections in the IOD-affected regions.



2016 ◽  
Vol 29 (11) ◽  
pp. 4031-4046 ◽  
Author(s):  
Prashant Kumar ◽  
Seung-Ki Min ◽  
Evan Weller ◽  
Hansu Lee ◽  
Xiaolan L. Wang

Abstract Extreme ocean surface wave heights significantly affect coastal structures and offshore activities and impact many vulnerable populations of low-lying islands. Therefore, better understanding of ocean wave height variability plays an important role in potentially reducing risk in such regions. In this study, global impacts of natural climate variability such as El Niño–Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and Pacific decadal oscillation (PDO) on extreme significant wave height (SWH) are analyzed using ERA-Interim (1980–2014) and ECMWF twentieth-century reanalysis (ERA-20C; 1952–2010) datasets for December–February (DJF). The nonstationary generalized extreme value (GEV) analysis is used to determine the influence of natural climate variability on DJF maxima of SWH (Hmax), wind speed (Wmax), and mean sea level pressure gradient amplitude (Gmax). The major ENSO influence on Hmax is found over the northeastern North Pacific (NP), with increases during El Niño and decreases during La Niña, and its counter responses are observed in coastal regions of the western NP, which are consistently observed in both Wmax and Gmax responses. The Hmax response to the PDO occurs over similar regions in the NP as those associated with ENSO but with much weaker amplitude. Composite analysis of different ENSO and PDO phase combinations reveals stronger (weaker) influences when both variability modes are of the same (opposite) phase. Furthermore, significant NAO influence on Hmax, Wmax, and Gmax is observed throughout Icelandic and Azores regions in relation to changes in atmospheric circulation patterns. Overall, the response of extreme SWH to natural climate variability modes is consistent with seasonal mean responses.



2015 ◽  
Vol 28 (7) ◽  
pp. 2564-2583 ◽  
Author(s):  
Tim Cowan ◽  
Wenju Cai ◽  
Benjamin Ng ◽  
Matthew England

Abstract The tropical Indian Ocean has experienced a faster warming rate in the west than in the east over the twentieth century. The warming pattern resembles a positive Indian Ocean dipole (IOD) that is well captured by climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), forced with the two main anthropogenic forcings, long-lived greenhouse gases (GHGs), and aerosols. However, much less is known about how GHGs and aerosols influence the IOD asymmetry, including the negative sea surface temperature (SST) skewness in the east IOD pole (IODE). Here, it is shown that the IODE SST negative skewness is more enhanced by aerosols than by GHGs using single-factor forcing experiments from 10 CMIP5 models. Aerosols induce a greater mean zonal thermocline gradient along the tropical Indian Ocean than that forced by GHGs, whereby the thermocline is deeper in the east relative to the west. This generates strong asymmetry in the SST response to thermocline anomalies between warm and cool IODE phases in the aerosol-only experiments, enhancing the negative IODE SST skewness. Other feedback processes involving zonal wind, precipitation, and evaporation cannot solely explain the enhanced SST skewness by aerosols. An interexperiment comparison in one model with strong skewness confirms that the mean zonal thermocline gradient across the Indian Ocean determines the magnitude of the SST–thermocline asymmetry, which in turn controls the SST skewness strength. The findings suggest that as aerosol emissions decline and GHGs increase, this will likely contribute to a future weakening of the IODE SST skewness.





2011 ◽  
Author(s):  
Michael L. Banner ◽  
Russel P. Morison


2007 ◽  
Author(s):  
Howard Schulz ◽  
Andres Corrada-Emmanuel


2009 ◽  
Author(s):  
Michael L. Banner ◽  
Russel P. Morison


2013 ◽  
Author(s):  
Michael L. Banner ◽  
Russel P. Morison


Sign in / Sign up

Export Citation Format

Share Document