scholarly journals Realism of the Indian Ocean Dipole in CMIP5 Models: The Implications for Climate Projections

2013 ◽  
Vol 26 (17) ◽  
pp. 6649-6659 ◽  
Author(s):  
Evan Weller ◽  
Wenju Cai

Abstract An assessment of how well climate models simulate the Indian Ocean dipole (IOD) is undertaken using 20 coupled models that have partaken in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Compared with models in phase 3 (CMIP3), no substantial improvement is evident in the simulation of the IOD pattern and/or amplitude during austral spring [September–November (SON)]. The majority of models in CMIP5 generate a larger variance of sea surface temperature (SST) in the Sumatra–Java upwelling region and an IOD amplitude that is far greater than is observed. Although the relationship between precipitation and tropical Indian Ocean SSTs is well simulated, future projections of SON rainfall changes over IOD-influenced regions are intrinsically linked to the IOD amplitude and its rainfall teleconnection in the model present-day climate. The diversity of the simulated IOD amplitudes in models in CMIP5 (and CMIP3), which tend to be overly large, results in a wide range of future modeled SON rainfall trends over IOD-influenced regions. The results herein highlight the importance of realistically simulating the present-day IOD properties and suggest that caution should be exercised in interpreting climate projections in the IOD-affected regions.

2015 ◽  
Vol 28 (7) ◽  
pp. 2564-2583 ◽  
Author(s):  
Tim Cowan ◽  
Wenju Cai ◽  
Benjamin Ng ◽  
Matthew England

Abstract The tropical Indian Ocean has experienced a faster warming rate in the west than in the east over the twentieth century. The warming pattern resembles a positive Indian Ocean dipole (IOD) that is well captured by climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), forced with the two main anthropogenic forcings, long-lived greenhouse gases (GHGs), and aerosols. However, much less is known about how GHGs and aerosols influence the IOD asymmetry, including the negative sea surface temperature (SST) skewness in the east IOD pole (IODE). Here, it is shown that the IODE SST negative skewness is more enhanced by aerosols than by GHGs using single-factor forcing experiments from 10 CMIP5 models. Aerosols induce a greater mean zonal thermocline gradient along the tropical Indian Ocean than that forced by GHGs, whereby the thermocline is deeper in the east relative to the west. This generates strong asymmetry in the SST response to thermocline anomalies between warm and cool IODE phases in the aerosol-only experiments, enhancing the negative IODE SST skewness. Other feedback processes involving zonal wind, precipitation, and evaporation cannot solely explain the enhanced SST skewness by aerosols. An interexperiment comparison in one model with strong skewness confirms that the mean zonal thermocline gradient across the Indian Ocean determines the magnitude of the SST–thermocline asymmetry, which in turn controls the SST skewness strength. The findings suggest that as aerosol emissions decline and GHGs increase, this will likely contribute to a future weakening of the IODE SST skewness.


2013 ◽  
Vol 26 (3) ◽  
pp. 959-972 ◽  
Author(s):  
Yan Du ◽  
Wenju Cai ◽  
Yanling Wu

Abstract The tropical Indian Ocean dipole/zonal mode (IOD) is phase locked with the austral winter and spring seasons. This study describes three types of the IOD in terms of their peak time and duration. In particular, the authors focus on a new type that develops in May–June and matures in July–August, which is distinctively different from the canonical IOD, which may develop later and peak in September–November or persist from June to November. Such “unseasonable” IOD events are only observed since the mid-1970s, a period after which the tropical Indian Ocean has a closer relationship with the Pacific Ocean. The unseasonable IOD is an intrinsic mode of the Indian Ocean and occurs without an ensuing El Niño. A change in winds along the equator is identified as a major forcing. The wind change is in turn related to a weakening Walker circulation in the Indian Ocean sector in austral winter, which is in part forced by the rapid Indian Ocean warming. Thus, although the occurrence of the unseasonable IOD may be partially influenced by oceanic variability, the authors’ results suggest an influence from the Indian Ocean warming. This suggestion, however, awaits further investigation using fully coupled climate models.


2005 ◽  
Vol 18 (17) ◽  
pp. 3428-3449 ◽  
Author(s):  
Albert S. Fischer ◽  
Pascal Terray ◽  
Eric Guilyardi ◽  
Silvio Gualdi ◽  
Pascale Delecluse

Abstract The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Niño–Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Niño, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Niño state. The presence of these two triggers—the first independent of ENSO and the second phase locking the IOZM to El Niño—allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Niño.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1437
Author(s):  
Mary T. Kayano ◽  
Wilmar L. Cerón ◽  
Rita V. Andreoli ◽  
Rodrigo A. F. Souza ◽  
Itamara P. Souza ◽  
...  

This paper examines the effects of the tropical Pacific Ocean (TPO) and Indian Ocean Dipole (IOD) modes in the interannual variations of austral spring rainfall over South America (SA). The TPO mode refers to the El Niño-Southern Oscillation (ENSO). The isolated effects between IOD and TPO were estimated, events were chosen from the residual TPO (R-TPO) or residual IOD (R-IOD), and the IOD (TPO) effects for the R-TPO (R-IOD) composites were removed from the variables. One relevant result was the nonlinear precipitation response to R-TPO and R-IOD. This feature was accentuated for the R-IOD composites. The positive R-IOD composite showed significant negative precipitation anomalies along equatorial SA east of 55° W and in subtropical western SA, and showed positive anomalies in northwestern SA and central Brazil. The negative R-IOD composite indicated significant positive precipitation anomalies in northwestern Amazon, central–eastern Brazil north of 20° S, and western subtropical SA, and negative anomalies were found in western SA south of 30° S. This nonlinearity was likely due to the distinct atmospheric circulation responses to the anomalous heating sources located in longitudinally distinct regions: the western tropical Indian Ocean and areas neighboring Indonesia. The results obtained in this study might be relevant for climate monitoring and modeling studies.


2014 ◽  
Vol 41 (24) ◽  
pp. 8978-8986 ◽  
Author(s):  
Evan Weller ◽  
Wenju Cai ◽  
Yan Du ◽  
Seung-Ki Min

2015 ◽  
Vol 28 (2) ◽  
pp. 695-713 ◽  
Author(s):  
Yan Du ◽  
Yuhong Zhang

Abstract This study investigates sea surface salinity (SSS) variations in the tropical Indian Ocean (IO) using the Aquarius/Satelite de Aplicaciones Cientificas-D (SAC-D) and the Soil Moisture and Ocean Salinity (SMOS) satellite data and the Argo observations during July 2010–July 2014. Compared to the Argo observations, the satellite datasets generally provide SSS maps with higher space–time resolution, particularly in the regions where Argo floats are sparse. Both Aquarius and SMOS well captured the SSS variations associated with the Indian Ocean dipole (IOD) mode. Significant SSS changes occurred in the central equatorial IO, along the Java–Sumatra coast, and south of the equatorial IO, due to ocean circulation variations. During the negative IOD events in 2010, 2013, and 2014, westerly wind anomalies strengthened along the equator, weakening coastal upwelling off Java and Sumatra and decreasing SSS. South of the equatorial IO, an anomalous cyclonic gyre changed the tropical circulation, which favored the eastward high-salinity tongue along the equator and the westward low-saline tongue in the south. An upwelling Rossby wave favored the increase of SSS farther to the south. During the positive IOD events in 2011 and 2012, the above-mentioned processes reversed, although the decrease of SSS was weaker in magnitude.


2014 ◽  
Vol 28 (1) ◽  
pp. 3-19 ◽  
Author(s):  
Yongjing Zhao ◽  
Sumant Nigam

Abstract The claim for a zonal-dipole structure in interannual variations of the tropical Indian Ocean (IO) SSTs—the Indian Ocean dipole (IOD)—is reexamined after accounting for El Niño–Southern Oscillation’s (ENSO) influence. The authors seek an a priori accounting of ENSO’s seasonally stratified influence on IO SSTs and evaluate the basis of the related dipole mode index, instead of seeking a posteriori adjustments to this index, as common. Scant observational evidence is found for zonal-dipole SST variations after removal of ENSO’s influence from IO SSTs: The IOD poles are essentially uncorrelated in the ENSO-filtered SSTs in both recent (1958–98) and century-long (1900–2007) periods, leading to the breakdown of zonal-dipole structure in surface temperature variability; this finding does not depend on the subtleties in estimation of ENSO’s influence. Deconstruction of the fall 1994 and 1997 SST anomalies led to their reclassification, with a weak IOD in 1994 and none in 1997. Regressions of the eastern IOD pole on upper-ocean heat content, however, do exhibit a zonal-dipole structure but with the western pole in the central-equatorial IO, suggesting that internally generated basin variability can have zonal-dipole structure at the subsurface. The IO SST variability was analyzed using the extended-EOF technique, after removing the influence of Pacific SSTs; the technique targets spatial and temporal recurrence and extracts modes (rather than patterns) of variability. This spatiotemporal analysis also does not support the existence of zonal-dipole variability at the surface. However, the analysis did yield a dipole-like structure in the meridional direction in boreal fall/winter, when it resembles the subtropical IOD pattern (but not the evolution time scale).


2020 ◽  
pp. 1-50
Author(s):  
Lei Zhang ◽  
Gang Wang ◽  
Matthew Newman ◽  
Weiqing Han

AbstractThe Indian Ocean has received increasing attention for its large impacts on regional and global climate. However, sea surface temperature (SST) variability arising from Indian Ocean internal processes has not been well understood particularly on decadal and longer timescales, and the external influence from the Tropical Pacific has not been quantified. This paper analyzes the interannual-to-decadal SST variability in the Tropical Indian Ocean in observations and explores the external influence from the Pacific versus internal processes within the Indian Ocean using a Linear Inverse Model (LIM). Coupling between Indian Ocean and tropical Pacific SST anomalies (SSTAs) is assessed both within the LIM dynamical operator and the unpredictable stochastic noise that forces the system. Results show that the observed Indian Ocean Basin (IOB)-wide SSTA pattern is largely a response to the Pacific ENSO forcing, although it in turn has a damping effect on ENSO especially on annual and decadal timescales. On the other hand, the Indian Ocean Dipole (IOD) is an Indian Ocean internal mode that can actively affect ENSO; ENSO also has a returning effect on the IOD, which is rather weak on decadal timescale. The third mode is partly associated with the Subtropical Indian Ocean Dipole (SIOD), and it is primarily generated by Indian Ocean internal processes, although a small component of it is coupled with ENSO. Overall, the amplitude of Indian Ocean internally generated SST variability is comparable to that forced by ENSO, and the Indian Ocean tends to actively influence the tropical Pacific. These results suggest that the Indian-Pacific Ocean interaction is a two-way process.


2021 ◽  
Author(s):  
Annalisa Cherchi ◽  
Pascal Terray ◽  
Satyaban Bishoyi Ratna ◽  
Virna Meccia ◽  
Sooraj K.P.

<p>The Indian Ocean Dipole (IOD) is one of the dominant modes of variability of the tropical Indian Ocean and it has been suggested to have a crucial role in the teleconnection between the Indian summer monsoon and El Nino Southern Oscillation (ENSO). The main ideas at the base of the influence of the IOD on the ENSO-monsoon teleconnection include the possibility that it may strengthen summer rainfall over India, as well as the opposite, and also that it may produce a remote forcing on ENSO itself. The Indian Ocean has been experiencing a warming, larger than any other basins, since the 1950s. During these decades, the summer monsoon rainfall over India decreased and the frequency of Indian Ocean Dipole (IOD) events increased. In the future the IOD is projected to further increase in frequency and amplitude with mean conditions mimicking the characteristics of its positive phase. Still, state of the art global climate models have large biases in representing IOD and monsoon mean state and variability, with potential consequences for properties and related teleconnections projected in the future. This works collects a review study of the influence of the IOD on the ISM and its relationship with ENSO, as well as new results on IOD projections comparing CMIP5 and CMIP6 models.</p>


Sign in / Sign up

Export Citation Format

Share Document