Assessments of multiple gridded‐rainfall datasets for characterizing the precipitation concentration index and its trends in India

Author(s):  
Suman Bhattacharyya ◽  
S Sreekesh
2018 ◽  
Vol 36 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Hanene Bessaklia ◽  
Abderrahmane Nekkache Ghenim ◽  
Abdessalam Megnounif ◽  
Javier Martin-Vide

AbstractIn this study, the spatial variation of daily and monthly concentration precipitation index and its aggressiveness were used in 23 rainfall stations in the extreme north-east of Algeria over the period 1970–2010. The trend was analysed by the Mann–Kendall (MK) test. The results show that daily precipitation concentration index (CI) values are noticeably higher in places where the amount of total precipitation is low, the results of MK test show that areas of high precipitation concentration tend to increase. The seasonality and aggressiveness of precipitation are high in the eastern and western parts of the study region (eastern and central coastal of Constantine catchments), whereas a moderately seasonal distribution with low aggressiveness is found in the middle of the study area (plains and central Seybouse catchment). As a result, the modified Fournier index (MFI) has a significant correlation with annual precipitation, whereas the CI and monthly precipitation concentration index (PCI) show an opposite correlation in relation to annual precipitation.


2017 ◽  
Vol 141 (4) ◽  
pp. 655-669 ◽  
Author(s):  
Dalibor Petković ◽  
Milan Gocic ◽  
Slavisa Trajkovic ◽  
Miloš Milovančević ◽  
Dragoljub Šević

2015 ◽  
Vol 15 (3) ◽  
pp. 617-625 ◽  
Author(s):  
A. Benhamrouche ◽  
D. Boucherf ◽  
R. Hamadache ◽  
L. Bendahmane ◽  
J. Martin-Vide ◽  
...  

Abstract. In this paper, the spatial and temporal distribution of the daily precipitation concentration index (CI) in Algeria (south Mediterranean Sea) has been assessed. CI is an index related to the rainfall intensity and erosive capacity; therefore, this index is of great interest for studies on torrential rainfall and floods. Forty-two daily rainfall series based on high-quality and fairly regular rainfall records for the period from 1970 to 2008 were used. The daily precipitation CI results allowed the identification of three climate zones: the northern country, characterized by coastal regions with CI values between 0.59 and 0.63; the highlands, with values between 0.57 and 0.62, except for the region of Biskra (CI = 0.70); and the southern region of the country, with high rainfall concentrations with values between 0.62 and 0.69.


2011 ◽  
Vol 11 (5) ◽  
pp. 1259-1265 ◽  
Author(s):  
M. de Luis ◽  
J. C. González-Hidalgo ◽  
M. Brunetti ◽  
L. A. Longares

Abstract. An analysis was made of the Precipitation Concentration Index using the new MOPREDAS database of monthly precipitation in Spain (Monthly Precipitation Data base of Spain). The database was compiled after exhaustive quality control of the complete digitalized Spanish Meterological Agency (AEMet) archives and contains a total set of 2670 complete and homogeneous monthly precipitation series from 1946 to 2005. Thus, MOPREDAS currently holds the densest information available for the 1946–2005 period for Spain and ensures a high resolution of results. The Precipitation Concentration Index (PCI) is a powerful indicator of the temporal distribution of precipitation, traditionally applied at annual scales; as the value increases, the more concentrated the precipitation. Furthermore PCI is a part of the well-known Fournier index, with a long tradition on natural system analyses, as for example soil erosion. In this paper, the mean values of annual, seasonal and wet and dry periods of PCI in the conterminous Spain and for two normal periods (1946–1975 and 1976–2005) were studied. Precipitation in Spain follows a general NW-SE spatial pattern during the wet (months) period due to the Atlantic storm track, while during the dry (months) period, it follows a predominantly N-S spatial pattern. As a result, the annual values of PCI combine the two patterns and show a SW-NE PCI gradient. The analyses of the two sub-periods show significant changes in the precipitation occurred in conterminous Spain from 1946 to 2005, and precipitation concentration increased across most of the IP. At an annual scale, PCI increases mostly due to an increase in precipitation concentration during the wet season. At a seasonal scale significant changes were detected between 1945–1975 and 1976–2005, particularly in autumn (increase of PCI values), while changes in winter, spring and summer were mostly localized and not generalized (both increase and decrease). Changes in PCI seem to be complex and appear to be related to global atmospheric features and synoptic and local factors affecting precipitation trends. We discuss the possible explanation linked to the atmospheric pattern and monthly trends and their implications.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 627
Author(s):  
Kevin K. W. Cheung ◽  
Aliakbar. A. Rasuly ◽  
Fei Ji ◽  
Lisa T.-C. Chang

In this study; the spatial distribution of the Daily Precipitation Concentration Index (DPCI) has been analyzed inside the Greater Sydney Metropolitan Area (GSMA). Accordingly, the rainfall database from the Australian Bureau of Meteorology archive was utilized after comprehensive quality control. The compiled data contains a set of 41 rainfall stations indicating consistent daily precipitation series from 1950 to 2015. In the analysis of the DPCI across GSMA the techniques of Moran’s Spatial Autocorrelation has been applied. In addition, a cross-covariance method was applied to assess the spatial interdependency between vector-based datasets after performing an Ordinary Kriging interpolation. The results identify four well-recognized intense rainfall development zones: the south coast and topographic areas of the Illawarra district characterized by Tasman Sea coastal regions with DPCI values ranging from 0.61 to 0.63, the western highlands of the Blue Mountains, with values between 0.60 and 0.62, the inland regions, with lowest rainfall concentrations between 0.55 and 0.59, and lastly the districts located inside the GSMA with DPCI ranging 0.60 to 0.61. Such spatial distribution has revealed the rainstorm and severe thunderstorm activity in the area. This study applies the present models to identify the nature and mechanisms underlying the distribution of torrential rains over space within the metropolis of Sydney, and to monitor any changes in the spatial pattern under the warming climate.


Sign in / Sign up

Export Citation Format

Share Document