Cellular turnover at the chondro-osseous junction of growth plate cartilage: Analysis by serial sections at the light microscopical level

1989 ◽  
Vol 7 (5) ◽  
pp. 654-666 ◽  
Author(s):  
Cornelia E. Farnum ◽  
Norman J. Wilsman
Author(s):  
F.W. Van Leeuwen

In order to obtain specific and optimal ultrastructural localization of vasopressin and oxytocin in the hypothalamo-neurohypophyseal system of the rat, 2 staining procedures and several tissue treatments were evaluated using neurohypophyseal tissue. It appeared from these studies that post-embedding staining with the unlabeled antibody enzyme method developed by Sternberger allows greater dilution of the first antibody (anti-vasopressin, 1:4800) than the indirect procedure (1:320) using a peroxidase conjugate as second antibody. Immersion fixation with 4% formalin during 24 hours gave better results (general ultrastructure, immunoreactivity) than those obtained by perfusion fixation with 2.5% glutaraldehyde-1% paraformaldehyde or freeze substitution.Since no reliable specificity tests were performed at the electron microscopical level, tests were developed for antibodies against both vasopressin and oxytocin. For anti-vasopressin plasma neural lobes of homozygous Brattleboro rats, that are lacking vasopressin by a genet- ical defect, were used. For antibodies against both hormones serial sections were used that were alternately incubated with the antibodies.


Author(s):  
Ś Lhoták ◽  
I. Alexopoulou ◽  
G. T. Simon

Various kidney diseases are characterized by the presence of dense deposits in the glomeruli. The type(s) of immunoglobulins (Igs) present in the dense deposits are characteristic of the disease. The accurate Identification of the deposits is therefore of utmost diagnostic and prognostic importance. Immunofluorescence (IF) used routinely at the light microscopical level is unable to detect and characterize small deposits found in early stages of glomerulonephritis. Although conventional TEM is able to localize such deposits, it is not capable of determining their nature. It was therefore attempted to immunolabel at EM level IgG, IgA IgM, C3, fibrinogen and kappa and lambda Ig light chains commonly found in glomerular deposits on routinely fixed ( 2% glutaraldehyde (GA) in 0.1M cacodylate buffer) kidney biopsies.The unosmicated tissue was embedded in LR White resin polymerized by UV light at -10°C. A postembedding immunogold technique was employed


2019 ◽  
Author(s):  
Takeshi Kimura ◽  
Kie Yasuda ◽  
Yukako Nakano ◽  
Shinji Takeyari ◽  
Yasuji Kitabatake ◽  
...  

1987 ◽  
Vol 262 (32) ◽  
pp. 15490-15495
Author(s):  
J Klein-Nulend ◽  
J P Veldhuijzen ◽  
R J van de Stadt ◽  
G P van Kampen ◽  
R Kuijer ◽  
...  

2010 ◽  
Vol 285 (47) ◽  
pp. 36674-36681 ◽  
Author(s):  
Julie A. Williams ◽  
Maureen Kane ◽  
Takahiro Okabe ◽  
Motomi Enomoto-Iwamoto ◽  
Joseph L. Napoli ◽  
...  

1984 ◽  
Vol 32 (6) ◽  
pp. 593-607 ◽  
Author(s):  
C E Farnum ◽  
N J Wilsman

A postembedment method for the localization of lectin-binding glycoconjugates was developed using Epon-embedded growth plate cartilage from Yucatan miniature swine. By testing a variety of etching, blocking, and incubation procedures, a standard protocol was developed for 1 micron thick sections that allowed visualization of both intracellular and extracellular glycoconjugates with affinity for wheat germ agglutinin and concanavalin A. Both fluorescent and peroxidase techniques were used, and comparisons were made between direct methods and indirect methods using the biotin-avidin bridging system. Differential extracellular lectin binding allowed visualization of interterritorial , territorial, and pericellular matrices. Double labeling experiments showed the precision with which intracellular binding could be localized to specific cytoplasmic compartments, with resolution of binding to the Golgi apparatus, endoplasmic reticulum, and nuclear membrane at the light microscopic level. This method allows the localization of both intracellular and extracellular lectin-binding glycoconjugates using fixation and embedment procedures that are compatible with simultaneous ultrastructural analysis. As such it should have applicability both to the morphological analysis of growth plate organization during normal endochondral ossification, as well as to the diagnostic pathology of matrix abnormalities in disease states of growing cartilage.


Sign in / Sign up

Export Citation Format

Share Document