Knee joint contact pressure decreases after chronic meniscectomy relative to the acutely meniscectomized joint: A mechanical study in the goat

1993 ◽  
Vol 11 (6) ◽  
pp. 796-804 ◽  
Author(s):  
D. I. Bylski-Austrow ◽  
J. Malumed ◽  
T. Meade ◽  
E. S. Grood
2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Wei Gu ◽  
Marcus G. Pandy

Abstract The primary aim of this study was to validate predictions of human knee-joint contact mechanics (specifically, contact pressure, contact area, and contact force) derived from finite-element models of the tibiofemoral and patellofemoral joints against corresponding measurements obtained in vitro during simulated weight-bearing activity. A secondary aim was to perform sensitivity analyses of the model calculations to identify those parameters that most significantly affect model predictions of joint contact pressure, area, and force. Joint pressures in the medial and lateral compartments of the tibiofemoral and patellofemoral joints were measured in vitro during two simulated weight-bearing activities: stair descent and squatting. Model-predicted joint contact pressure distribution maps were consistent with those obtained from experiment. Normalized root-mean-square errors between the measured and calculated contact variables were on the order of 15%. Pearson correlations between the time histories of model-predicted and measured contact variables were generally above 0.8. Mean errors in the calculated center-of-pressure locations were 3.1 mm for the tibiofemoral joint and 2.1 mm for the patellofemoral joint. Model predictions of joint contact mechanics were most sensitive to changes in the material properties and geometry of the meniscus and cartilage, particularly estimates of peak contact pressure. The validated finite element modeling framework offers a useful tool for noninvasive determination of knee-joint contact mechanics during dynamic activity under physiological loading conditions.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Kenji Kitamura ◽  
Masanori Fujii ◽  
Miho Iwamoto ◽  
Satoshi Ikemura ◽  
Satoshi Hamai ◽  
...  

Abstract Background The ideal acetabular position for optimizing hip joint biomechanics in periacetabular osteotomy (PAO) remains unclear. We aimed to determine the relationship between acetabular correction in the coronal plane and joint contact pressure (CP) and identify morphological factors associated with residual abnormal CP after correction. Methods Using CT images from 44 patients with hip dysplasia, we performed three patterns of virtual PAOs on patient-specific 3D hip models; the acetabulum was rotated laterally to the lateral center-edge angles (LCEA) of 30°, 35°, and 40°. Finite-element analysis was used to calculate the CP of the acetabular cartilage during a single-leg stance. Results Coronal correction to the LCEA of 30° decreased the median maximum CP 0.5-fold compared to preoperatively (p <  0.001). Additional correction to the LCEA of 40° further decreased CP in 15 hips (34%) but conversely increased CP in 29 hips (66%). The increase in CP was associated with greater preoperative extrusion index (p = 0.030) and roundness index (p = 0.038). Overall, virtual PAO failed to normalize CP in 11 hips (25%), and a small anterior wall index (p = 0.049) and a large roundness index (p = 0.003) were associated with residual abnormal CP. Conclusions The degree of acetabular correction in the coronal plane where CP is minimized varied among patients. Coronal plane correction alone failed to normalize CP in 25% of patients in this study. In patients with an anterior acetabular deficiency (anterior wall index < 0.21) and an aspherical femoral head (roundness index > 53.2%), coronal plane correction alone may not normalize CP. Further studies are needed to clarify the effectiveness of multiplanar correction, including in the sagittal and axial planes, in optimizing the hip joint’s contact mechanics.


2018 ◽  
Vol 4 (1) ◽  
pp. 203-205
Author(s):  
Mehdi Saeidi ◽  
Maziar Ramezani ◽  
Piaras Kelly ◽  
Mohd Sabri Hussin ◽  
Thomas Neitzert

AbstractThis research aimed to study the efficacy of a novel implant for osteoarthritic knees. This implant is designed to eliminate excessive loads through the knee and to provide suitable conditions for possible tibiofemoral cartilage regeneration. The implant was designed for the medial side of the knee joint. Finite Element Analysis (FEA) was performed for an extended knee position of the knee joint. Contact pressure distributions on the medial and lateral compartments were investigated as well as stress distributions throughout the implant’s plates. Results with and without the implant were compared, and it was seen that the contact pressures on the surface of the distal femur were reduced by more than 90% after the introduction of the implant.


Author(s):  
Ehsan Arbabi ◽  
Salman Chegini ◽  
Ronan Boulic ◽  
Stephen J Ferguson ◽  
Daniel Thalmann

2006 ◽  
Vol 39 ◽  
pp. S491-S492
Author(s):  
F. Araujo ◽  
C. Bernardes ◽  
G. Portella ◽  
L.F. Silveira ◽  
J. Loss

2015 ◽  
Vol 31 (6) ◽  
pp. e12-e13
Author(s):  
Sanjeev Bhatia ◽  
Simon Lee ◽  
Elizabeth Shewman ◽  
Michael Salata ◽  
Charles Bush-Joseph ◽  
...  

Spine ◽  
2013 ◽  
Vol 38 (2) ◽  
pp. E84-E93 ◽  
Author(s):  
Nicolas V. Jaumard ◽  
Joel A. Bauman ◽  
Benjamin B. Guarino ◽  
Akhilesh J. Gokhale ◽  
Daniel E. Lipschutz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document