Effects of water-saving superabsorbent polymer on antioxidant enzyme activities and lipid peroxidation in corn (Zea mays L.) under drought stress

2010 ◽  
Vol 91 (5) ◽  
pp. 813-819 ◽  
Author(s):  
M Robiul Islam ◽  
Yuegao Hu ◽  
Sishuai Mao ◽  
Pengfei Jia ◽  
A Egrinya Eneji ◽  
...  
2007 ◽  
Vol 132 (3) ◽  
pp. 319-326 ◽  
Author(s):  
Michelle DaCosta ◽  
Bingru Huang

Previous investigations identified velvet bentgrass (Agrostis canina L.) as having higher drought resistance among bentgrass species. This study was designed to determine whether species variation in drought resistance for colonial bentgrass (A. capillaris L.), creeping bentgrass (A. stolonifera L.), and velvet bentgrass was associated with differences in antioxidant enzyme levels in response to drought. Plants of ‘Tiger II’ colonial bentgrass, ‘L-93’ creeping bentgrass, and ‘Greenwich’ velvet bentgrass were maintained in a growth chamber under two watering treatments: 1) well-watered control and 2) irrigation completely withheld for 28 d (drought stress). Prolonged drought stress caused oxidative damage in all three bentgrass species as exhibited by a general decline in antioxidant enzyme activities and an increase in lipid peroxidation. Compared among the three species, velvet bentgrass maintained antioxidant enzyme activities for a greater duration of drought treatment compared with both colonial bentgrass and creeping bentgrass. Higher antioxidant enzyme capacity for velvet bentgrass was associated with less lipid peroxidation and higher turf quality, leaf relative water content, and photochemical efficiency for a greater duration of stress compared with colonial bentgrass and creeping bentgrass. These results suggest that bentgrass resistance to drought stress could be associated with higher oxidative scavenging ability, especially for velvet bentgrass.


Author(s):  
Shamim Akram ◽  
Mohammad Golam Kibria ◽  
Yoshiyuki Murata ◽  
Md. Anamul Hoque

Improving drought stress tolerance in maize is essential to increase its production and yield worldwide.  Thus, the present study was conducted to investigate the improvement of drought tolerance in maize (Zea mays L.) by exogenous application of proline (25 and 50mM) on two maize varieties. Maize plants were subjected to drought stress at various phases of plant growth under pot culture conditions and proline was applied as foliar spray. Water deficit stress caused a significant decrease (by approximately 25%) in growth and yield of both maize varieties by decreasing plant height, cob length, dry root weight, grains per cob and 100-grain weight. Water deficit stress also decreased chlorophyll and intercellular proline contents, and antioxidant enzyme activities viz. catalase (CAT), guaiacol peroxidase (POX) and ascorbate peroxidase (APX). Exogenous application of proline (50 mM) was found to be more effective in increasing growth and yield of both varieties. These increases were positively associated with increased levels (by at least 15%) of chlorophyll and intracellular proline, and enhanced activities of CAT, POX and APX enzymes in both varieties. Interaction effects of exogenous proline and water deficit stress were significant in aspects of higher growth and yields and enhanced levels of chlorophyll, intracellular proline and antioxidant enzyme activities. Therefore, it is concluded that foliar application of proline improves drought tolerance by modulating chlorophyll and intracellular proline contents, and antioxidant enzyme activities.


Sign in / Sign up

Export Citation Format

Share Document