antioxidant enzyme activities
Recently Published Documents


TOTAL DOCUMENTS

1623
(FIVE YEARS 502)

H-INDEX

78
(FIVE YEARS 8)

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 161
Author(s):  
Nikolaos Nenadis ◽  
Efi Samara ◽  
Fani Th. Mantzouridou

In the present work, the role of the carboxyl group of o-dihydroxybenzoic acids (pyrocatechuic, 2,3-diOH-BA and protocatechuic, 3,4-diOH-BA) on the protection against induced oxidative stress in Saccharomyces cerevisiae was examined. Catechol (3,4-diOH-B) was included for comparison. Cell survival, antioxidant enzyme activities, and TBARS level were used to evaluate the efficiency upon the stress induced by H2O2 or cumene hydroperoxide. Theoretical calculation of atomic charge values, dipole moment, and a set of indices relevant to the redox properties of the compounds was also carried out in the liquid phase (water). Irrespective of the oxidant used, 2,3-diOH-BA required by far the lowest concentration (3–5 μM) to facilitate cell survival. The two acids did not activate catalase but reduced superoxide dismutase activity (3,4-diOH-BA>2,3-diOH-BA). TBARS assay showed an antioxidant effect only when H2O2 was used; equal activity for the two acids and inferior to that of 3,4-diOH B. Overall, theoretical and experimental findings suggest that the 2,3-diOH-BA high activity should be governed by metal chelation. In the case of 3,4-diOH BA, radical scavenging increases, and chelation capacity decreases. The lack of carboxyl moiety (3,4-diOH B) adds to radical scavenging, interaction with lipophilic free radicals, and antioxidant enzymes. The present study adds to our knowledge of the antioxidant mechanism of dietary phenols in biological systems.


Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 179
Author(s):  
Federico Melenchón ◽  
Eduardo de Mercado ◽  
Héctor J. Pula ◽  
Gabriel Cardenete ◽  
Fernando G. Barroso ◽  
...  

The demand of optimal protein for human consumption is growing. The Food and Agriculture Organization (FAO) has highlighted aquaculture as one of the most promising alternatives for this protein supply gap due to the high efficiency of fish growth. However, aquaculture has been facing its own sustainability problem, because its high demand for protein has been traditionally satisfied with the use of fishmeal (FM) as the main source. Some of the most promising and sustainable protein substitutes for FM come from insects. The present manuscript provides insight into an experiment carried out on rainbow trout (Oncorhynchus mykiss) with a 50% replacement of FM with different larvae insect meals: Hermetia illucens (HI), and Tenebrio molitor (TM). TM showed better results for growth, protein utilization and more active digestive function, supported by intestinal histological changes. Liver histology and intermediary metabolism did not show relevant changes between insect meals, while other parameters such as antioxidant enzyme activities and tissue damage indicators showed the potential of insect meals as functional ingredients.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jiali Yang ◽  
Wenhui Gu ◽  
Zezhong Feng ◽  
Bin Yu ◽  
Jianfeng Niu ◽  
...  

Abscisic acid (ABA) is regarded as crucial for plant adaptation to water-limited conditions and it functions evolutionarily conserved. Thus, insights into the synthesis of ABA and its regulation on downstream stress-responsive genes in Neopyropia yezoensis, a typical Archaeplastida distributed in intertidal zone, will improve the knowledge about how ABA signaling evolved in plants. Here, the variations in ABA contents, antioxidant enzyme activities and expression of the target genes were determined under the presence of exogenous ABA and two specific inhibitors of the ABA precursor synthesis. ABA content was down-regulated under the treatments of each or the combination of the two inhibitors. Antioxidant enzyme activities like SOD, CAT and APX were decreased slightly with inhibitors, but up-regulated when the addition of exogenous ABA. The quantitative assays using real-time PCR (qRT-PCR) results were consistent with the enzyme activities. All the results suggested that ABA can also alleviate oxidative stress in N. yezoensis as it in terrestrial plant. Combined with the transcriptome assay, it was hypothesized that ABA is synthesized in N. yezoensis via a pathway that is similar to the carotenoid pathway in higher plants, and both the MVA and that the MEP pathways for isoprenyl pyrophosphate (IPP) synthesis likely exist simultaneously. The ABA signaling pathway in N. yezoensis was also analyzed from an evolutionary standpoint and it was illustrated that the emergence of the ABA signaling pathway in this alga is an ancestral one. In addition, the presence of the ABRE motif in the promoter region of antioxidase genes suggested that the antioxidase system is regulated by the ABA signaling pathway.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 154
Author(s):  
Naveed Mushtaq ◽  
Yong Wang ◽  
Junmiao Fan ◽  
Yi Li ◽  
Jing Ding

Environmental stresses negatively affect the growth and development of plants. Several previous studies have elucidated the response mechanisms of plants to drought and heat applied separately; however, these two abiotic stresses often coincide in environmental conditions. The global climate change pattern has projected that combined drought and heat stresses will tend to increase in the near future. In this study, we down-regulated the expression of a cytokinin receptor gene SlHK2 using RNAi and investigated the role of this gene in regulating plant responses to individual drought, heat, and combined stresses (drought + heat) in tomato. Compared to the wild-type (WT), SlHK2 RNAi plants exhibited fewer stress symptoms in response to individual and combined stress treatments. The enhanced abiotic stress tolerance of SlHK2 RNAi plants can be associated with increased membrane stability, osmoprotectant accumulation, and antioxidant enzyme activities. Furthermore, photosynthesis machinery was also protected in SlHK2 RNAi plants. Collectively, our results show that down-regulation of the cytokinin receptor gene SlHK2, and consequently cytokinin signaling, can improve plant tolerance to drought, heat, and combined stress.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262099
Author(s):  
Md Jahirul Islam ◽  
Md Jalal Uddin ◽  
Mohammad Anwar Hossain ◽  
Robert Henry ◽  
Mst. Kohinoor Begum ◽  
...  

Drought tolerance is a complex trait controlled by many metabolic pathways and genes and identifying a solution to increase the resilience of plants to drought stress is one of the grand challenges in plant biology. This study provided compelling evidence of increased drought stress tolerance in two sugar beet genotypes when treated with exogenous putrescine (Put) at the seedling stage. Morpho-physiological and biochemical traits and gene expression were assessed in thirty-day-old sugar beet seedlings subjected to drought stress with or without Put (0.3, 0.6, and 0.9 mM) application. Sugar beet plants exposed to drought stress exhibited a significant decline in growth and development as evidenced by root and shoot growth characteristics, photosynthetic pigments, antioxidant enzyme activities, and gene expression. Drought stress resulted in a sharp increase in hydrogen peroxide (H2O2) (89.4 and 118% in SBT-010 and BSRI Sugar beet 2, respectively) and malondialdehyde (MDA) (35.6 and 27.1% in SBT-010 and BSRI Sugar beet 2, respectively). These changes were strongly linked to growth retardation as evidenced by principal component analysis (PCA) and heatmap clustering. Importantly, Put-sprayed plants suffered from less oxidative stress as indicated by lower H2O2 and MDA accumulation. They better regulated the physiological processes supporting growth, dry matter accumulation, photosynthetic pigmentation and gas exchange, relative water content; modulated biochemical changes including proline, total soluble carbohydrate, total soluble sugar, and ascorbic acid; and enhanced the activities of antioxidant enzymes and gene expression. PCA results strongly suggested that Put conferred drought tolerance mostly by enhancing antioxidant enzymes activities that regulated homeostasis of reactive oxygen species. These findings collectively provide an important illustration of the use of Put in modulating drought tolerance in sugar beet plants.


Author(s):  
Marouane Ben Massoud ◽  
Oussama Kharbech ◽  
Yathreb Mahjoubi ◽  
Abdelilah Chaoui ◽  
Astrid Wingler

AbstractThe protective mechanism of nitric oxide (NO) in regulating tolerance to Cu-induced toxicity in shoots of barley (Hordeum vulgare L.) was studied. The experiment consisted of four treatments based on additions to basal nutrient solutions (BNS): control (CTR), Cu (200 µM), SNP (500 µM), and Cu (200 µM) + SNP (500 µM) over a period of 10 days. Treatment with Cu significantly reduced seedling growth and photosynthetic efficiency concomitant with an increase in reactive oxygen species contents, lipid peroxidation markers, and antioxidant enzyme activities, indicating that Cu induced oxidative stress. Furthermore, growth inhibition of Cu-treated plants was associated with a reduction in photosynthetic pigments and maximum photosystem II efficiency as well as a strong decrease in levels of glutathione (GSH) and ascorbate (AsA). Addition of a nitric oxide (NO) donor, sodium nitroprusside (SNP), to the growth medium alleviated Cu toxicity by decreasing Cu uptake and enhancing antioxidant capacity, as indicated by increased contents of GSH and AsA. The application of SNP decreased oxidative stress and lipid peroxidation by suppressing lipoxygenase activity and enhancing some antioxidant enzyme activities. The results obtained indicate the potential of exogenously applied SNP in the management of metal toxicity. Hence, NO generating compounds have potential agronomical applications when cultivating in contaminated areas. Our findings indicate that NO can alleviate Cu toxicity by affecting the antioxidant defense system and maintaining the glutathione-ascorbate cycle status, suggesting that SNP treatment protects proteins against oxidation by regulating the cellular redox homeostasis.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Nan Cai ◽  
Chunpeng Wan ◽  
Jinyin Chen ◽  
Chuying Chen

ABSTRACT The effects of storage temperature on postharvest storability, quality attributes and antioxidant enzyme activities of harvested Ponkan mandarins were investigated. Fresh fruits were randomly divided into four groups and stored at different temperatures [5 ± 1 °C (S5), 10 ± 1 °C (S10), 15 ± 1 °C (S15), and 20 ± 1 °C (S20 or control)] for 120 days. The results indicated that, compared with the control fruit, low-temperature storage at 10 °C significantly delayed the increase in fruit decay rate, weight loss, citrus colour index, respiration intensity, relative electrical conductivity, the accumulation of hydrogen peroxide and malondialdehyde, retarded the decline in L* value, retained high contents of total soluble solid, titratable acid, vitamin C, total phenol and total flavonoid, as well as higher activities of antioxidant enzymes – superoxide dismutase, catalase, peroxidase and ascorbic peroxidase. The principal component analysis results showed that low-temperature storage significantly maintained the postharvest quality of Ponkan mandarins, with fruit stored at 10 °C having no significant difference from the fruit stored at 5 °C, but markedly higher than those fruit stored at 15 °C. The comprehensive result of single-factor analysis and PCA showed that 10 °C could be used as the optimum storage temperature for improving the postharvest storability of Ponkan mandarins.


2022 ◽  
Vol 12 ◽  
Author(s):  
Elena Gorokhova ◽  
Rehab El-Shehawy

The association between oxidative processes and physiological responses has received much attention in ecotoxicity assessment. In the Baltic Sea, bloom-forming cyanobacterium Nodularia spumigena is a significant producer of various bioactive compounds, and both positive and adverse effects on grazers feeding in cyanobacteria blooms are reported. To elucidate the effect mechanisms and species sensitivity to the cyanobacteria-dominating diet, we exposed two Baltic copepods, Acartia bifilosa and Eurytemora affinis, to a diet consisting of toxin-producing cyanobacteria N. spumigena and a high-quality food Rhodomonas salina at 0–300 μg C L−1; the control food was R. salina provided as a monodiet at the same food levels. The subcellular responses to food type and availability were assayed using a suite of biomarkers – antioxidant enzymes [superoxide dismutases (SOD), catalase (CAT), and glutathione S-transferases (GST)] and acetylcholinesterase (AChE). In parallel, we measured feeding activity using gut content (GC) assayed by real-time PCR analysis that quantified amounts of the prey DNA in copepod stomachs. As growth and reproduction endpoints, individual RNA content (a proxy for protein synthesis capacity), egg production rate (EPR), and egg viability (EV%) were used. In both toxic and nontoxic foods, copepod GC, RNA content, and EPR increased with food availability. Antioxidant enzyme activities increased with food availability regardless of the diet type. Moreover, CAT (both copepods), SOD, and GST (A. bifilosa) were upregulated in the copepods receiving cyanobacteria; the response was detectable when adjusted for the feeding and/or growth responses. By contrast, the diet effects were not significant when food concentration was used as a co-variable. A bimodal response in AChE was observed in A. bifilosa feeding on cyanobacteria, with up to 52% increase at the lower levels (5–25 μg C L−1) and 32% inhibition at the highest food concentrations. These findings contribute to the refinement of biomarker use for assessing environmental stress and mechanistic understanding of cyanobacteria effects in grazers. They also suggest that antioxidant and AChE responses to feeding activity and diet should be accounted for when using biomarker profiles in field-collected animals in the Baltic Sea and, perhaps other systems, where toxic cyanobacteria are common.


2022 ◽  
Vol 12 ◽  
Author(s):  
Wen-Da Huang ◽  
Yuan-Zheng He ◽  
Huai-Hai Wang ◽  
Yuan-Zhong Zhu

The decreasing precipitation with global climate warming is the main climatic condition in some sandy grassland ecosystems. The understanding of physiological responses of psammophytes in relation to warming and precipitation is a possible way to estimate the response of plant community stability to climate change. We selected Lespedeza davurica, Artemisia scoparia, and Cleistogenes squarrosa in sandy grassland to examine the effect of a combination of climate warming and decreasing precipitation on relative water content (RWC), chlorophyll, proline, and antioxidant enzyme activities. We found that all experimental treatments have influenced RWC, chlorophyll, proline, and antioxidant enzyme activities of three psammophytes. L. davurica has the highest leaf RWC among the three psammophytes. With the intensification of precipitation reduction, the decreasing amplitude of chlorophyll from three psammophytes was L. davurica > C. squarrosa > A. scoparia. At the natural temperature, the malondialdehyde (MDA) content of the three psammophytes under severe drought treatment was much higher than other treatments, and their increasing degree was as follows: A. scoparia > C. squarrosa > L. davurica. At the same precipitation gradient, the proline of three psammophytes under warming was higher than the natural temperature. The differences in superoxide dismutase (SOD) among the three psammophytes were A. scoparia > L. davurica > C. squarrosa. Moreover, at natural temperature, more than 40% of precipitation reduction was most significant. Regardless of warming or not, the catalase (CAT) activity of A. scoparia under reduced precipitation treatments was higher than natural temperature, while the response of L. davurica was opposite. Correlation analyses evidenced that warming (T) was significant in L. davurica and precipitation (W) was significant in A. scoparia and C. squarrosa according to the Monte-Carlo permutation test (p = 0.002, 0.004, and 0.004). The study is important in predicting how local plants will respond to future climate change and assessing the possible effects of climate change on sandy grassland ecosystems.


Sign in / Sign up

Export Citation Format

Share Document