scholarly journals Main sources of uncertainty in recent methanol/NOx combustion models

Author(s):  
Márton Kovács ◽  
Máté Papp ◽  
István Gy. Zsély ◽  
Tamás Turányi
Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Kate Wheeling

Researchers identify the main sources of uncertainty in projections of global glacier mass change, which is expected to add about 8–16 centimeters to sea level, through this century.


1951 ◽  
Vol 37 (2) ◽  
pp. 156-156
Author(s):  
Alexander Hamilton

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1549
Author(s):  
Humberto Martínez-Barberá ◽  
Pablo Bernal-Polo ◽  
David Herrero-Pérez

This paper presents a framework for processing, modeling, and fusing underwater sensor signals to provide a reliable perception for underwater localization in structured environments. Submerged sensory information is often affected by diverse sources of uncertainty that can deteriorate the positioning and tracking. By adopting uncertain modeling and multi-sensor fusion techniques, the framework can maintain a coherent representation of the environment, filtering outliers, inconsistencies in sequential observations, and useless information for positioning purposes. We evaluate the framework using cameras and range sensors for modeling uncertain features that represent the environment around the vehicle. We locate the underwater vehicle using a Sequential Monte Carlo (SMC) method initialized from the GPS location obtained on the surface. The experimental results show that the framework provides a reliable environment representation during the underwater navigation to the localization system in real-world scenarios. Besides, they evaluate the improvement of localization compared to the position estimation using reliable dead-reckoning systems.


Author(s):  
D. Dupleac

The paper overviews the analytical studies performed at Politehnica University of Bucharest on the analysis of late phase severe accident phenomena in a Canada Deuterium Uranium (CANDU) plant. The calculations start from a dry debris bed at the bottom of calandria vessel. Both SCDAPSIM/RELAP code and ansys-fluent computational fluid dynamics (CFD) code are used. Parametric studies are performed in order to quantify the effect of several identified sources of uncertainty on calandria vessel failure: metallic fraction of zirconium inside the debris, containment pressure, timing of water depletion inside calandria vessel, steam circulation in calandria vessel above debris bed, debris temperature at moment of water depletion inside calandria vessel, calandria vault nodalization, and the gap heat transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document