water depletion
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 37)

H-INDEX

33
(FIVE YEARS 1)

2021 ◽  
Vol 256 ◽  
pp. 107061
Author(s):  
Jasreman Singh ◽  
Yufeng Ge ◽  
Derek M. Heeren ◽  
Elizabeth Walter-Shea ◽  
Christopher M.U. Neale ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Å. Kasimir ◽  
H. He ◽  
P.-E. Jansson ◽  
A. Lohila ◽  
K. Minkkinen

Nutrient-rich peat soils have previously been demonstrated to lose carbon despite higher photosynthesis and litter production compared to nutrient-poor soils, where instead carbon accumulates. To understand this phenomenon, we used a process-oriented model (CoupModel) calibrated on data from two closely located drained peat soil sites in boreal forests in Finland, Kalevansuo and Lettosuo, with different soil C/N ratios. Uncertainty-based calibrations were made using eddy-covariance data (hourly values of net ecosystem exchange) and tree growth data. The model design used two forest scenarios on drained peat soil, one nutrient-poor with dense moss cover and another with lower soil C/N ratio with sparse moss cover. Three vegetation layers were assumed: conifer trees, other vascular plants, and a bottom layer with mosses. Adding a moss layer was a new approach, because moss has a modified physiology compared to vascular plants. The soil was described by three separate soil organic carbon (SOC) pools consisting of vascular plants and moss litter origin and decomposed organic matter. Over 10 years, the model demonstrated a similar photosynthesis rate for the two scenarios, 903 and 1,034 g C m−2 yr−1, for the poor and rich site respectively, despite the different vegetation distribution. For the nutrient-rich scenario more of the photosynthesis produce accumulated as plant biomass due to more trees, while the poor site had abundant moss biomass which did not increase living aboveground biomass to the same degree. Instead, the poor site showed higher litter inputs, which compared with litter from vascular plants had low turnover rates. The model calibration showed that decomposition rate coefficients for the three SOC pools were similar for the two scenarios, but the high quantity of moss litter input with low decomposability for the nutrient poor scenario explained the major difference in the soil carbon balance. Vascular plant litter declined with time, while SOC pools originating from mosses accumulated with time. Large differences between the scenarios were obtained during dry spells where soil heterotrophic respiration doubled for the nutrient-rich scenario, where vascular plants dominated, owing to a larger water depletion by roots. Where moss vegetation dominated, the heterotrophic respiration increased by only 50% during this dry period. We suggest moss vegetation is key for carbon accumulation in the poor soil, adding large litter quantities with a resistant quality and less water depletion than vascular plants during dry conditions.


HortScience ◽  
2021 ◽  
pp. 1-9
Author(s):  
Ved Parkash ◽  
Sukhbir Singh ◽  
Manpreet Singh ◽  
Sanjit K. Deb ◽  
Glen L. Ritchie ◽  
...  

Water scarcity is increasing in the world, which is limiting crop production, especially in water-limited areas such as Southern High Plains of the United States. There is a need to adopt the irrigation management practices that can help to conserve water and sustain crop production in such water-limited areas. A 2-year field study was conducted during the summers of 2019 and 2020 to evaluate the effect of deficit irrigation levels and cultivars on root distribution pattern, soil water depletion, and water use efficiency (WUE) of cucumber (Cucumis sativus). The experiment was conducted in a split-plot design with four irrigation levels [100%, 80%, 60%, and 40% crop evapotranspiration (ETc)] as main plot factor and two cultivars (Poinsett 76 and Marketmore 76) as subplot factor with three replications. Results showed that root length density (RLD) was unaffected by the irrigation levels in 2019. In 2020, the RLD was comparable between 100% and 80% ETc, and it was significantly higher in 100% ETc than both 60% Eand 40% ETc. Root surface area density (RSAD) was not significantly different between 100% and 80% ETc, and it was significantly lower in both 60% and 40% ETc than 100% ETc in both years. Soil water depletion was the highest in 40% ETc followed by 60% and 80% ETc, and it was least in 100% ETc in both years. Evapotranspiration (ET) was the highest in 100% ETc followed by 80%, 60%, and 40% ETc. The WUE was not statistically different among the irrigation treatments. However, numerically, WUE was observed in the following order: 80% ETc > 100% ETc > 60% ETc > 40% ETc. The RLD, RSAD, soil water depletion, and ET were not significantly different between ‘Poinsett 76’ and ‘Marketmore 76’. However, fruit yield was significantly higher in ‘Poinsett 76’ than ‘Marketmore 76’, which resulted in higher WUE in Poinsett 76. It can be concluded that 80% ETc and Poinsett 76 cultivar can be adopted for higher crop water productivity and successful cucumber production in SHP.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1399
Author(s):  
Abdelrahman S. Zaky ◽  
Claudia E. Carter ◽  
Fanran Meng ◽  
Christopher E. French

Bioethanol has many environmental and practical benefits as a transportation fuel. It is one of the best alternatives to replace fossil fuels due to its liquid nature, which is similar to the gasoline and diesel fuels traditionally used in transportation. In addition, bioethanol production technology has the capacity for negative carbon emissions, which is vital for solving the current global warming dilemma. However, conventional bioethanol production takes place based on an inland site and relies on freshwater and edible crops (or land suitable for edible crop production) for production, which has led to the food vs. fuel debate. Establishing a coastal marine biorefinery (CMB) system for bioethanol production that is based on coastal sites and relies on marine resources (seawater, marine biomass and marine yeast) could be the ultimate solution. In this paper, we aim to evaluate the environmental impact of using seawater for bioethanol production at coastal locations as a step toward the evaluation of a CMB system. Hence, a life cycle assessment for bioethanol production was conducted using the proposed scenario, named Coastal Seawater, and compared to the conventional scenario, named Inland Freshwater (IF). The impact of each scenario in relation to climate change, water depletion, land use and fossil depletion was studied for comparison. The Coastal Seawater scenario demonstrated an improvement upon the conventional scenario in all the selected impact categories. In particular, the use of seawater in the process had a significant effect on water depletion, showing an impact reduction of 31.2%. Furthermore, reductions were demonstrated in natural land transformation, climate change and fossil depletion of 5.5%, 3.5% and 4.2%, respectively. This indicates the positive impact of using seawater and coastal locations for bioethanol production and encourages research to investigate the CMB system.


Author(s):  
Abdelrahman S. Zaky ◽  
Claudia E. Carter ◽  
Fanran Meng ◽  
Christopher E. French

Bioethanol has many environmental and practical benefits as a transportation fuel. It is one of the best alternatives to replace fossil fuels due to its liquid nature which is similar to petrol and diesel fuels traditionally used in transportation. In addition, bioethanol production technology has the capacity for negative carbon emissions which is vital for solving the current global warming dilemma. However, conventional bioethanol production takes place based on an inland site and relies on freshwater and edible crops (or land suitable for edible crop production) for production, which has led to the food vs fuel debate. Establishing a coastal marine biorefinery (CMB) system for bioethanol production that is based on coastal sites and relies on marine resources (seawater, marine biomass and marine yeast) could be the ultimate solution. In this paper, we aim to evaluate the environmental impact of using seawater for bioethanol production at coastal locations as a step towards the evaluation of a CMB system. Hence, a life cycle assessment for bioethanol production was conducted using the proposed scenario named Coastal-Seawater and compared to the conventional scenario, named Inland-Freshwater (IF). The impact of each scenario in relation to climate change, water depletion, land use and fossil depletion was studied for comparison. The coastal-seawater scenario demonstrated an improvement upon the conventional scenario in all the selected impact categories. In particular, the use of seawater in the process had a significant effect on water depletion showing an impact reduction of 31.2%. Furthermore, reductions are demonstrated in natural land transformation, climate change and fossil depletion of 5.5%, 3.5% and 4.2% respectively. This indicates the positive impact of using seawater and coastal locations for bioethanol production and encourages research to investigate the CMB system.


Author(s):  
Abdelrahman S. Zaky ◽  
Claudia E. Carter ◽  
Fanran Meng ◽  
Christopher E. French

Bioethanol has many environmental and practical benefits as a transportation fuel. It is one of the best alternatives to replace fossil fuels due to its liquid nature which is similar to petrol and diesel fuels traditionally used in transportation. In addition, bioethanol production technology has the capacity for negative carbon emissions which is vital for solving the current global warming dilemma. However, conventional bioethanol production takes place based on an inland site and relies on freshwater and edible crops (or land suitable for edible crop production) for production, which has led to the food vs fuel debate. Establishing a coastal marine biorefinery (CMB) system for bioethanol production that is based on coastal sites and relies on marine resources (seawater, marine biomass and marine yeast) could be the ultimate solution. In this paper, we aim to evaluate the environmental impact of using seawater for bioethanol production at coastal locations as a step towards the evaluation of a CMB system. Hence, a life cycle assessment for bioethanol production was conducted using the proposed scenario named Coastal-Seawater and compared to the conventional scenario, named Inland-Freshwater (IF). The impact of each scenario in relation to climate change, water depletion, land use and fossil depletion was studied for comparison. The coastal-seawater scenario demonstrated an improvement upon the conventional scenario in all the selected impact categories. In particular, the use of seawater in the process had a significant effect on water depletion showing an impact reduction of 31.2%. Furthermore, reductions are demonstrated in natural land transformation, climate change and fossil depletion of 5.5%, 3.5% and 4.2% respectively. This indicates the positive impact of using seawater and coastal locations for bioethanol production and encourages research to investigate the CMB system.


Author(s):  
Satoshi Shibuta ◽  
Hiroshi Imamura ◽  
Kota Shibuta ◽  
Ken Judai
Keyword(s):  

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1377
Author(s):  
Jeffrey D. Svedin ◽  
Ruth Kerry ◽  
Neil C. Hansen ◽  
Bryan G. Hopkins

Addressing within-field and within-season variability of crop water stress is critical for spatially variable irrigation. This study measures interactions between spatially variable soil properties and temporally variable crop water dynamics; and whether modelling soil water depletion is an effective approach to guide variable-rate irrigation (VRI). Energy and water balance equations were used to model crop water stress at 85 locations within a 22 ha field of winter wheat (Triticum aestivum L.) under uniform and spatially variable irrigation. Significant within-field variability of soil water holding capacity (SWHC; 145–360 mm 1.2 m−1), soil electrical conductivity (0.22–49 mS m−1), spring soil water (314–471 mm 1.2 m−1), and the onset of crop water stress were observed. Topographic features and modelled onset of crop water stress were significant predictors of crop yield while soil moisture at spring green-up, elevation, and soil electrical conductivity were significant predictors of the onset of crop water stress. These results show that modelling soil water depletion can be an effective scheduling tool in VRI. Irrigation zones and scheduling efforts should consider expanding to include temporally dynamic factors, including spring soil water content and the onset of crop water stress.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1744
Author(s):  
Hongyan Sun ◽  
Roger Kjelgren ◽  
Michael D. Dukes ◽  
Richard C. Beeson

We investigated seasonal water use, growth and acceptable root-zone water depletion levels to develop tools for the more precise irrigation of two Southeast U.S. landscape species in a monsoonal climate—Magnolia grandiflora and Viburnum odoratissimum. The study was conducted under a rainout shelter consisting of two concurrent studies. One, weighing lysimeter readings of quantified water use (ETA) at different levels of irrigation frequency that dried the root zone to different allowable depletion levels (ADL). Two, planting the same species and sizes inground and irrigating them to the same ADLs to assess the effect of root-zone water depletion on growth. The projected crown area (PCA) and crown volume were concurrently measured every three weeks in both studies as well as reference evapotranspiration (ETo). Plant factor values were calculated from the ratio of ETA (normalized to depth units by PCA) to ETo. The two species had different tolerances for irrigation frequency depending on the season: peak magnolia canopy growth was mid-spring to mid-summer, while peak viburnum canopy growth was summer. Canopy growth for both species was most sensitive to greater ADL-water stress during the peak growth stages of both species. For urban landscape irrigation, these data suggest that 60–75% of available water in magnolia and viburnum root zones can be depleted before irrigation and that they can be irrigated at a plant factor (PF) value of 0.6 of ETo. For landscape situations with high expectations, such as during establishment and especially during peak growth, a wetter water budget that minimizes water stress would be more appropriate: 30–45% ADL and PF values of 0.7–0.8. The results of this study are aimed at water managers and landscape architects and designers in a humid climate who need to account for water demand in planning scenarios.


Sign in / Sign up

Export Citation Format

Share Document