underwater localization
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Vol 15 ◽  
Author(s):  
Chensheng Cheng ◽  
Can Wang ◽  
Dianyu Yang ◽  
Weidong Liu ◽  
Feihu Zhang

SLAM (Simultaneous Localization And Mapping) plays a vital role in navigation tasks of AUV (Autonomous Underwater Vehicle). However, due to a vast amount of image sonar data and some acoustic equipment's inherent high latency, it is a considerable challenge to implement real-time underwater SLAM on a small AUV. This paper presents a filter based methodology for SLAM algorithms in underwater environments. First, a multi-beam forward looking sonar (MFLS) is utilized to extract environmental features. The acquired sonar image is then converted to sparse point cloud format through threshold segmentation and distance-constrained filtering to solve the calculation explosion issue caused by a large amount of original data. Second, based on the proposed method, the DVL, IMU, and sonar data are fused, the Rao-Blackwellized particle filter (RBPF)-based SLAM method is used to estimate AUV pose and generate an occupancy grid map. To verify the proposed algorithm, the underwater vehicle is equipped as an experimental platform to conduct field tasks in both the experimental pool and wild lake, respectively. Experiments illustrate that the proposed approach achieves better performance in both state estimation and suppressing divergence.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 142
Author(s):  
Morgan Louédec ◽  
Luc Jaulin

The extended Kalman filter has been shown to be a precise method for nonlinear state estimation and is the facto standard in navigation systems. However, if the initial estimated state is far from the true one, the filter may diverge, mainly due to an inconsistent linearization. Moreover, interval filters guarantee a robust and reliable, yet unprecise and discontinuous localization. This paper proposes to choose a point estimated by an interval method, as a linearization point of the extended Kalman filter. We will show that this combination allows us to get a higher level of integrity of the extended Kalman filter.


2021 ◽  
Author(s):  
lingling zhang ◽  
baoguo yu ◽  
Chengkai Tang ◽  
yi zhang ◽  
Houbing Song

Abstract The growing scale of marine exploration requires high-resolution underwater localization, which necessitates cooperation among underwater network nodes, considering the channel complexity and power efficiency. In this paper, we proposed factor graph weight particles aided distributed underwater nodes cooperative positioning algorithm (WP-DUCP). It capitalized on the factor graph and sum-product algorithm to decompose the global optimization to the product of several local optimization functions. Combined with the Gaussian parameters to construct the weighted particles and to realize the belief transfer, it shows low complexity and high efficiency, suitable to the energy-restricted and communication distance-limited underwater networks. In terms of convergence, localization resolution, and computation complexity, we conducted the simulation and real-test with comparison to the existing co-localization methods. The results verified a higher resolution of the proposed method with no extra computation burden.


2021 ◽  
Author(s):  
Alzahraa Ghonim ◽  
wessam salama ◽  
ABD EL-RAHMAN EL-FIKKY ◽  
Ashraf Khalaf ◽  
Hossam Shalaby

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1549
Author(s):  
Humberto Martínez-Barberá ◽  
Pablo Bernal-Polo ◽  
David Herrero-Pérez

This paper presents a framework for processing, modeling, and fusing underwater sensor signals to provide a reliable perception for underwater localization in structured environments. Submerged sensory information is often affected by diverse sources of uncertainty that can deteriorate the positioning and tracking. By adopting uncertain modeling and multi-sensor fusion techniques, the framework can maintain a coherent representation of the environment, filtering outliers, inconsistencies in sequential observations, and useless information for positioning purposes. We evaluate the framework using cameras and range sensors for modeling uncertain features that represent the environment around the vehicle. We locate the underwater vehicle using a Sequential Monte Carlo (SMC) method initialized from the GPS location obtained on the surface. The experimental results show that the framework provides a reliable environment representation during the underwater navigation to the localization system in real-world scenarios. Besides, they evaluate the improvement of localization compared to the position estimation using reliable dead-reckoning systems.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 762
Author(s):  
Gianni Cario ◽  
Alessandro Casavola ◽  
Gianfranco Gagliardi ◽  
Marco Lupia ◽  
Umberto Severino

In underwater localization systems several sources of error may impact in different ways the accuracy of the final position estimates. Through simulations and statistical analysis it is possible to identify and characterize such sources of error and their relative importance. This is especially of use when an accurate localization system has to be designed within required accuracy prescriptions. This approach allows one to also investigate how much these sources of error influence the final position estimates achieved by an Extended Kalman Filter (EKF). This paper presents the results of experiments designed in a virtual environment used to simulate real acoustic underwater localization systems. The paper intends to analyze the main parameters that significantly influence the position estimates achieved by a Short Baseline (SBL) system. Specifically, the results of this analysis are presented for a proprietary localization system constituted by a surface platform equipped with four acoustic transducers used for the localization of an underwater target. The simulator here presented has the purpose of simulating the hardware system and modifying some of its design parameters, such as the base-line length and the errors on the GPS and Inertial Measurement Unit (IMU) units, in order to understand which parameters have to modify for improving the accuracy of the entire positioning system. It is shown that statistical analysis techniques can be of help in determining the best values of these parameters that permit to improve the performance of a real hardware system.


Sign in / Sign up

Export Citation Format

Share Document