radiation thermometry
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 17)

H-INDEX

19
(FIVE YEARS 2)

Measurement ◽  
2022 ◽  
pp. 110646
Author(s):  
Iñigo Martinez ◽  
Urtzi Otamendi ◽  
Igor G. Olaizola ◽  
Roger Solsona ◽  
Mikel Maiza ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 235
Author(s):  
Tong Zhang ◽  
Xuyao Song ◽  
Gongjin Qi ◽  
Baolin An ◽  
Wei Dong ◽  
...  

Zirconium oxide (ZrO2) is widely used as the thermal barrier coating in turbines and engines. Accurate emissivity measurement of ZrO2 coating at high temperatures, especially above 1000 °C, plays a vital role in thermal modelling and radiation thermometry. However, it is an extremely challenging enterprise, and very few high temperature emissivity results with rigorously estimated uncertainties have been published to date. The key issue for accurately measuring the high temperature emissivity is maintaining a hot surface without reflection from the hot environment, and avoiding passive or active oxidation of material, which will modify the emissivity. In this paper, a novel modified integrated blackbody method is reported to measure the high temperature normal spectral emissivity of ZrO2 coating in the temperature range 1000 °C to 1200 °C and spectral range 8 μm to 14 μm. The results and the associated uncertainty of the measurement were estimated and a relative standard uncertainty better than 7% (k = 2) is achieved.


2021 ◽  
Author(s):  
Zezhan Zhang ◽  
Yi Niu ◽  
Peifeng Yu ◽  
Shan Gao ◽  
Jing Jiang ◽  
...  

2020 ◽  
Vol 46 (1) ◽  
pp. 9
Author(s):  
Yinsen Luan ◽  
Di Mei ◽  
Shengxian Shi

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qilong Cheng ◽  
Sukumar Rajauria ◽  
Erhard Schreck ◽  
Robert Smith ◽  
Na Wang ◽  
...  

AbstractThe microelectronics industry is pushing the fundamental limit on the physical size of individual elements to produce faster and more powerful integrated chips. These chips have nanoscale features that dissipate power resulting in nanoscale hotspots leading to device failures. To understand the reliability impact of the hotspots, the device needs to be tested under the actual operating conditions. Therefore, the development of high-resolution thermometry techniques is required to understand the heat dissipation processes during the device operation. Recently, several thermometry techniques have been proposed, such as radiation thermometry, thermocouple based contact thermometry, scanning thermal microscopy, scanning transmission electron microscopy and transition based threshold thermometers. However, most of these techniques have limitations including the need for extensive calibration, perturbation of the actual device temperature, low throughput, and the use of ultra-high vacuum. Here, we present a facile technique, which uses a thin film contact thermometer based on the phase change material $$Ge_2 Sb_2 Te_5$$ G e 2 S b 2 T e 5 , to precisely map thermal contours from the nanoscale to the microscale. $$Ge_2 Sb_2 Te_5$$ G e 2 S b 2 T e 5 undergoes a crystalline transition at $$\hbox {T}_{{g}}$$ T g with large changes in its electric conductivity, optical reflectivity and density. Using this approach, we map the surface temperature of a nanowire and an embedded micro-heater on the same chip where the scales of the temperature contours differ by three orders of magnitude. The spatial resolution can be as high as 20 nanometers thanks to the continuous nature of the thin film.


Sign in / Sign up

Export Citation Format

Share Document