Multifaceted pH and Temperature Induced Self‐Assembly of P(DMAEMA‐ co ‐LMA)‐ b ‐POEGMA Terpolymers and Their Cationic Analogues in Aqueous Media

2021 ◽  
pp. 2000358
Author(s):  
Martha Kafetzi ◽  
Stergios Pispas
Keyword(s):  
Author(s):  
Xiaoya Peng ◽  
Dan Li ◽  
Yuanting Li ◽  
Haibo Xing ◽  
Wei Deng

Antibiotic contaminants in aqueous media pose serious threat to human and ecological environments. Therefore, it is necessary to develop robust strategies to detect antibiotic residues. For this purpose, a self-assembly...


2020 ◽  
Vol 2020 ◽  
pp. 1-24 ◽  
Author(s):  
Carmen Cretu ◽  
Loredana Maiuolo ◽  
Domenico Lombardo ◽  
Elisabeta I. Szerb ◽  
Pietro Calandra

The involvement of metal ions within the self-assembly spontaneously occurring in surfactant-based systems gives additional and interesting features. The electronic states of the metal, together with the bonds that can be established with the organic amphiphilic counterpart, are the factors triggering new photophysical properties. Moreover, the availability of stimuli-responsive supramolecular amphiphile assemblies, able to disassemble in a back-process, provides reversible switching particularly useful in novel approaches and applications giving rise to truly smart materials. In particular, small amphiphiles with an inner distribution, within their molecular architecture, of various polar and apolar functional groups, can give a wide variety of interactions and therefore enriched self-assemblies. If it is joined with the opportune presence and localization of noble metals, whose chemical and photophysical properties are undiscussed, then very interesting materials can be obtained. In this minireview, the basic concepts on self-assembly of small amphiphilic molecules with noble metals are shown with particular reference to the photophysical properties aiming at furnishing to the reader a panoramic view of these exciting problematics. In this respect, the following will be shown: (i) the principles of self-assembly of amphiphiles that involve noble metals, (ii) examples of amphiphiles and amphiphile-noble metal systems as representatives of systems with enhanced photophysical properties, and (iii) final comments and perspectives with some examples of modern applications.


2011 ◽  
Vol 91 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Fei Wang ◽  
Kewei Ding ◽  
Feipeng Wu
Keyword(s):  

Author(s):  
Xiaoxuan Zeng ◽  
Yue Wu ◽  
Lin Zou ◽  
Xingwang Liu ◽  
Xin Qi ◽  
...  
Keyword(s):  

2014 ◽  
Vol 428 ◽  
pp. 267-275 ◽  
Author(s):  
K. Srinivasa Rao ◽  
Praveen Singh Gehlot ◽  
Tushar J. Trivedi ◽  
Arvind Kumar

2017 ◽  
Vol 41 (12) ◽  
pp. 4806-4813 ◽  
Author(s):  
Subhamay Pramanik ◽  
Vandana Bhalla ◽  
Manoj Kumar

The aggregates of HPB derivative 7 exhibited “on–on” response towards Zn2+ ions and this in situ prepared 7-Zn2+ ensemble was utilized as a “not quenched” probe for detection of PPi ions in aqueous media.


2020 ◽  
Vol 52 (8) ◽  
pp. 923-930 ◽  
Author(s):  
Hanae Arakawa ◽  
Kumi Takeda ◽  
Sayuri L. Higashi ◽  
Aya Shibata ◽  
Yoshiaki Kitamura ◽  
...  

AbstractVarious biofunctional hydrogel materials can be fabricated in aqueous media through the self-assembly of peptide derivatives, forming supramolecular nanostructures and their three-dimensional networks. In this study, we describe the self-assembly of new Fmoc-dipeptides comprising α-methyl-L-phenylalanine. We found that the position and number of methyl groups introduced onto the α carbons of the Fmoc-dipeptides by α-methyl-L-phenylalanine have a marked influence on the morphology of the supramolecular nanostructure as well as the hydrogel (network) formation ability.


RSC Advances ◽  
2017 ◽  
Vol 7 (39) ◽  
pp. 24522-24536 ◽  
Author(s):  
N. S. Serkhacheva ◽  
O. I. Smirnov ◽  
A. V. Tolkachev ◽  
N. I. Prokopov ◽  
A. V. Plutalova ◽  
...  

Hydrophilic and amphiphilic polymeric trithiocarbonates based on polyacrylic acid are able to provide polymerization-induced self-assembly in copolymerization of butyl and fluoroalkyl acrylates.


Sign in / Sign up

Export Citation Format

Share Document