scholarly journals Transition probability estimates for subordinate random walks

Author(s):  
Wojciech Cygan ◽  
Stjepan Šebek
2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
András Telcs

International audience This paper presents necessary and sufficient conditions for on- and off-diagonal transition probability estimates for random walks on weighted graphs. On the integer lattice and on may fractal type graphs both the volume of a ball and the mean exit time from a ball are independent of the center, uniform in space. Here the upper estimate is given without such restriction and two-sided estimate is given if the mean exit time is independent of the center but the volume is not.


1980 ◽  
Vol 17 (01) ◽  
pp. 253-258 ◽  
Author(s):  
R. B. Nain ◽  
Kanwar Sen

For correlated random walks a method of transition probability matrices as an alternative to the much-used methods of probability generating functions and difference equations has been investigated in this paper. To illustrate the use of transition probability matrices for computing the various probabilities for correlated random walks, the transition probability matrices for restricted/unrestricted one-dimensional correlated random walk have been defined and used to obtain some of the probabilities.


2019 ◽  
Vol 33 (05) ◽  
pp. 1950023 ◽  
Author(s):  
Huai Zhang ◽  
Hongjuan Zhang

In this paper, we define a class of weighted directed networks with the weight of its edge dominated by a weight parameter w. According to the construction of the networks, we study two types of random walks in the weighted directed networks with a trap fixed on the central node, i.e., standard random walks and mixed random walks. For the standard random walks, the trapping process is controlled by a weight parameter w which changes the transition probability of random walks. For the mixed random walks including nonnearest-neighbor hopping, the trapping process is steered by a stochastic parameter [Formula: see text], where [Formula: see text] changes the walking rule. For the above two techniques, we derive both analytically the average trapping time (ATT) as the measure of trapping efficiency, and the obtained analytical expressions are in good agreement with the corresponding numerical solutions for different values of w and [Formula: see text]. The obtained results indicate that ATT scales superlinearly with network size Nn and the weight parameter w changes simultaneously the prefactor and the leading scalings of ATT, while the stochastic parameter [Formula: see text] can only alter the prefactor of ATT and leave the leading scalings of ATT unchanged. This work may help in paving the way for understanding the effects of the link weight and nonnearest-neighbor hopping in real complex systems.


2017 ◽  
Vol 28 (09) ◽  
pp. 1750111
Author(s):  
Yan Wang ◽  
Ding Juan Wu ◽  
Fang Lv ◽  
Meng Long Su

We investigate the concurrent dynamics of biased random walks and the activity-driven network, where the preferential transition probability is in terms of the edge-weighting parameter. We also obtain the analytical expressions for stationary distribution and the coverage function in directed and undirected networks, all of which depend on the weight parameter. Appropriately adjusting this parameter, more effective search strategy can be obtained when compared with the unbiased random walk, whether in directed or undirected networks. Since network weights play a significant role in the diffusion process.


2018 ◽  
Vol 55 (3) ◽  
pp. 862-886 ◽  
Author(s):  
F. Alberto Grünbaum ◽  
Manuel D. de la Iglesia

Abstract We consider upper‒lower (UL) (and lower‒upper (LU)) factorizations of the one-step transition probability matrix of a random walk with the state space of nonnegative integers, with the condition that both upper and lower triangular matrices in the factorization are also stochastic matrices. We provide conditions on the free parameter of the UL factorization in terms of certain continued fractions such that this stochastic factorization is possible. By inverting the order of the factors (also known as a Darboux transformation) we obtain a new family of random walks where it is possible to state the spectral measures in terms of a Geronimus transformation. We repeat this for the LU factorization but without a free parameter. Finally, we apply our results in two examples; the random walk with constant transition probabilities, and the random walk generated by the Jacobi orthogonal polynomials. In both situations we obtain urn models associated with all the random walks in question.


Sign in / Sign up

Export Citation Format

Share Document