Synthesis of thermoreversible polymers by aminolysis of poly(methyl 2-(N-acryloylamino)-2-methoxyacetate): Correlations of the lower critical solution temperatures (LCST) with the side group structures and the salt concentration in aqueous systems

1994 ◽  
Vol 15 (3) ◽  
pp. 271-277 ◽  
Author(s):  
Helmut Ritter ◽  
Anja Stock
2021 ◽  
Author(s):  
Yasuteru Mawatari ◽  
Muneki Oouchi ◽  
Yoshiaki Yoshida ◽  
Toshifumi Hiraoki ◽  
Masayoshi Tabata

1988 ◽  
Vol 21 (2) ◽  
pp. 323-334 ◽  
Author(s):  
Harry R. Allcock ◽  
Mark S. Connolly ◽  
John T. Sisko ◽  
Saman Al-Shali
Keyword(s):  

1983 ◽  
Vol 80 ◽  
pp. 315-323 ◽  
Author(s):  
Marc Lindheimer ◽  
Jean-Claude Montet ◽  
Roselyne Bontemps ◽  
Jacques Rouviere ◽  
Bernard Brun

1993 ◽  
Vol 3 (6) ◽  
pp. 865-889 ◽  
Author(s):  
Norbert Schwenk ◽  
Hans Wolfgang Spiess
Keyword(s):  

2018 ◽  
Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

<div> <div> <div> <p>The model and analysis methods developed in this work are generally applicable to any polymer electrolyte/cation-anion combination, but we focus on the currently most prominent polymer electrolyte material system: poly(ethylene) oxide/Li- bis(trifluoromethane) sulfonamide (PEO + LiTFSI). The obtained results are surprising and challenge the conventional understanding of ionic transport in polymer electrolytes: the investigation of a technologically relevant salt concentration range (1 - 4 M) revealed the central role of the anion in coordinating and hindering Li ion movement. Our results provide insights into correlated ion dynamics, at the same time enabling rational design of better PEO-based electrolytes. In particular, we report the following novel observations. 1. Strong binding of the Li cation with the polymer competes with significant correlation of the cation with the salt anion. 2. The appearance of cation-anion clusters, especially at high concentration. 3. The asymmetry in the composition (and therefore charge) of such clusters; specifically, we find the tendency for clusters to have a higher number of anions than cations.</p> </div> </div> </div>


2018 ◽  
Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

<div> <div> <div> <p>The model and analysis methods developed in this work are generally applicable to any polymer electrolyte/cation-anion combination, but we focus on the currently most prominent polymer electrolyte material system: poly(ethylene) oxide/Li- bis(trifluoromethane) sulfonamide (PEO + LiTFSI). The obtained results are surprising and challenge the conventional understanding of ionic transport in polymer electrolytes: the investigation of a technologically relevant salt concentration range (1 - 4 M) revealed the central role of the anion in coordinating and hindering Li ion movement. Our results provide insights into correlated ion dynamics, at the same time enabling rational design of better PEO-based electrolytes. In particular, we report the following novel observations. 1. Strong binding of the Li cation with the polymer competes with significant correlation of the cation with the salt anion. 2. The appearance of cation-anion clusters, especially at high concentration. 3. The asymmetry in the composition (and therefore charge) of such clusters; specifically, we find the tendency for clusters to have a higher number of anions than cations.</p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document