partially miscible
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 30)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Shoji Seya ◽  
Ryuta Suzuki ◽  
Yuichiro Nagatsu ◽  
Takahiko Ban ◽  
Manoranjan Mishra

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6089
Author(s):  
Takahiko Ban ◽  
Ryohei Tanaka ◽  
Ryuta X. Suzuki ◽  
Yuichiro Nagatsu

The displacement of one fluid by another is an important process, not only in industrial and environmental fields, such as chromatography, enhanced oil recovery, and CO2 sequestration, but also material processing, such as Lost Foam Casting. Even during hydrodynamically stable fluid displacement where a more viscous fluid displaces a less viscous fluid in porous media or in Hele-Shaw cells, the growing interface fluctuates slightly. This fluctuation is attributed to thermodynamic conditions, which can be categorized as the following systems: fully miscible, partially miscible, and immiscible. The dynamics of these three systems differ significantly. Here, we analyze interfacial fluctuations under the three systems using Family–Vicsek scaling and calculate the scaling indexes. We discovered that the roughness exponent, , and growth exponent, , of the partially miscible case are larger than those of the immiscible and fully miscible cases due to the effects of the Korteweg convection as induced during phase separation. Moreover, it is confirmed that fluctuations in all systems with steady values of and are represented as a single curve, which implies that accurate predictions for the growing interface with fluctuations in Hele-Shaw flows can be accomplished at any scale and time, regardless of the miscibility conditions.


2021 ◽  
Vol 926 ◽  
Author(s):  
Hamid Emami-Meybodi ◽  
Fengyuan Zhang

This study presents a buoyancy-driven stability analysis in a three-dimensional inclined porous medium with a capillary transition zone that is formed between a non-wetting and an underlying wetting phase. In this two-phase, two-component, partially miscible system, a solute from a non-wetting phase diffuses into a porous layer saturated with a wetting-phase fluid, creating a dense diffusive boundary layer beneath an established capillary transition zone. Transient concentration and gravity-driven velocity fields are derived for the wetting phase while the saturation field remains fixed. Linear stability analysis with the quasi-steady-state approximation is employed to determine the onset of solutal convective instability for buoyancy-dominant, in-transition and capillary-dominant systems. The analysis of the problem leads to a differential eigenvalue problem composed of a system of three complex-valued equations that are numerically solved to determine the critical times, critical wavenumbers and neutral stability curves as a function of inclination angle for different Bond numbers. The layer inclination is shown to play an essential role in the stability of the problem, where the gravity-driven flow removes solute concentrations in the diffusive boundary layer. The results indicate that the horizontal porous layer exhibits the fastest onset of instability, and longitudinal rolls are always more unstable than oblique and transverse rolls. The inclination angle has a more substantial impact on stabilizing the diffusive boundary layer in the buoyancy-dominant than in the capillary-dominant systems. Furthermore, for both buoyancy-dominant and capillary-dominant systems, the critical times and wavenumbers vary exponentially with inclination angle ≤ 60° and follow the Stirling model.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1376
Author(s):  
Hideki Kanda ◽  
Wahyudiono ◽  
Motonobu Goto

The Tolman length and interfacial tension of partially miscible symmetric binary Lennard–Jones (LJ) fluids (A, B) was revealed by performing a large-scale molecular dynamics (MD) simulation with a sufficient interfacial area and cutting distance. A unique phenomenon was observed in symmetric binary LJ fluids, where two surfaces of tension existed on both sides of an equimolar dividing surface. The range of interaction εAB between the different liquids and the temperature in which the two LJ fluids partially mixed was clarified, and the Tolman length exceeded 3 σ when εAB was strong at higher temperatures. The results show that as the temperature or εAB increases, the Tolman length increases and the interfacial tension decreases. This very long Tolman length indicates that one should be very careful when applying the concept of the liquid–liquid interface in the usual continuum approximation to nanoscale droplets and capillary phase separation in nanopores.


2021 ◽  
Author(s):  
Benjamim H.L. Silva ◽  
Cesar A.M. Abreu

The effects of mass transfer were quantified for the effective performance of mixtures between partially miscible phases, or for the promotion of their separations. To consolidate the analysis of heterogeneous liquid–liquid processes, variations in the composition of the liquid phases over the evolution of contact operations were considered, detailing the physical mechanisms involved in the mixtures of oil (soy, sunflower) and alcohol (methanol, ethanol), and in the separation between biodiesel and glycerin. Based on experimental evaluations, the average distribution coefficients for triglycerides (oil-alcohol) and glycerol (biodiesel-glycerin) were estimated at 1.31 and 1.46, and 3.42 × 10−2 and 4.06 × 10–2, for soybean and sunflower, respectively, while their mass transfer coefficients, depending on their concentration ranges in the phase, varied in orders of magnitude from 10−2 s−1 to 10–4 s−1. Including the values of the physical parameters, a heterogeneous model for the alkaline transesterification of soybean oil (methanol, ethanol, NaOH, 25°C, 40°C, 60°C, 600 rpm) was validated.


Author(s):  
Ramin Rabani ◽  
Hosein Sadafi ◽  
Hatim Machrafi ◽  
Monavar Abbasi ◽  
Benoit Haut ◽  
...  

2021 ◽  
Vol 182 ◽  
pp. 115727
Author(s):  
Jianhua Wu ◽  
Jvyuan Duan ◽  
Xiaoyang Li ◽  
Hongyan Shi ◽  
Yanjun Du ◽  
...  

Soft Matter ◽  
2021 ◽  
Author(s):  
Mehzabin Patel ◽  
Anand N. P. Radhakrishnan ◽  
Ludovic Bescher ◽  
Elwin Hunter-Sellars ◽  
Benjamin Schmidt-Hansberg ◽  
...  

We demonstrate how, for a binary blend of a thermotropic liquid crystal and methanol, cooling from a miscible to an immiscible state induces the reversible formation of microdroplets, whose size, number and mesogen orientation can be controlled by the temperature protocol.


Sign in / Sign up

Export Citation Format

Share Document