Rheology and Drug Release Properties of Bioresorbable Hydrogels Prepared from Polylactide/Poly(ethylene glycol) Block Copolymers

2005 ◽  
Vol 222 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Suming Li ◽  
Abdelslam El Ghzaoui ◽  
Emilie Dewinck
NANO ◽  
2020 ◽  
Vol 15 (03) ◽  
pp. 2050040 ◽  
Author(s):  
Jia Liu ◽  
Juan Li ◽  
Tingting Liu

In this report, mixed polymeric micelles (MPMs) system self-assembled from two kinds of cholesterol-grafted amphiphilic block copolymers cholesterol modified poly ([Formula: see text]-amino esters)-grafted disulfide poly (ethylene glycol) methyl ether (PAE(-ss-mPEG)-[Formula: see text]-Chol) and poly([Formula: see text]-amino ester)-g-poly(ethylene glycol) methyl ether-cholesterol (PAE-[Formula: see text]-mPEG-Chol) were prepared for drug delivery and controlled release with pH and redox-responsibilities. The self-assembly of two block copolymers was evaluated by measurement of critical micelle concentration (CMC) values using fluorescence spectroscopy. The hydrodynamic diameter, polydispersity index (PDI) and zeta-potential of MPMs in aqueous were recorded by dynamic light scattering (DLS) at different conditions. Doxorubicin (DOX) was efficiently encapsulated in the micellar core by the hydrophobic interaction. The drug loading content (LC) and encapsulation efficacy (EE) of MPMs with different formulations were evaluated. The DOX was released due to the swelling and disassembly of MPMs induced by low pH and high glutathione (GSH) concentrations. The in vitro results demonstrated that drug release rate and cumulative release were obviously dependent on pH values and reducing agents. The results showed that the MPMs could be the potential anticancer drug delivery carriers with pH/redox-triggered drug release profile.


RSC Advances ◽  
2015 ◽  
Vol 5 (26) ◽  
pp. 20025-20034 ◽  
Author(s):  
Yuling Li ◽  
Sai Wang ◽  
Dandan Zhu ◽  
Yuling Shen ◽  
Baixiang Du ◽  
...  

Reversibly shell cross-linked micelles based on a lipoic acid (LA) decorated triblock copolymer poly(ethylene glycol)-b-poly(γ-benzyl-l-glutamate)-b-poly(l-phenylalanine) have been developed for efficient intracellular delivery of DOX.


2013 ◽  
Vol 813 ◽  
pp. 399-402
Author(s):  
Chimsook Thitipha ◽  
Thitiphan Chimsook

The aim of present work was to prepare floating microsphere of ketoprofen using matrix polymer of chitosan and poly (ethylene glycol) by solvent diffusion method. The floating microsphere of ketoprofen was prepared from matrix polymer of chitosan and poly (ethylene glycol) with various composition ratios and evaluated such as particle size, drug compatibility and drug release of microspheres. The scanning electron microscopy of microspheres confirmed their hollow structures with smooth surface. Formulation CPK 4 to CPK 6 exhibited the best controlled release pattern in ketoprofen. The concentration and size of poly (ethylene-glycol) affected the particle size, percentage yield and drug release of microspheres.


2011 ◽  
Vol 22 (8) ◽  
pp. 1519-1525 ◽  
Author(s):  
Daniel K. Bonner ◽  
Cheuk Leung ◽  
Jane Chen-Liang ◽  
Loice Chingozha ◽  
Robert Langer ◽  
...  

Biomaterials ◽  
2004 ◽  
Vol 25 (2) ◽  
pp. 247-258 ◽  
Author(s):  
A.A. Deschamps ◽  
A.A. van Apeldoorn ◽  
H. Hayen ◽  
J.D. de Bruijn ◽  
U. Karst ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document