On the Influence of Polymer Surface Layer Thickness on the Adhesion of Composite Assembly. Differences between Initial State and Thermal Ageing

2007 ◽  
Vol 249-250 (1) ◽  
pp. 635-640 ◽  
Author(s):  
Quentin Bénard ◽  
Magali Fois ◽  
Michel Grisel ◽  
Céline Picard
2019 ◽  
Vol 1281 ◽  
pp. 012057 ◽  
Author(s):  
E O Nasakina ◽  
M A Sudarchikova ◽  
K Yu Demin ◽  
M A Gol’dberg ◽  
M I Baskakova ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2929
Author(s):  
Nadir Ayrilmis ◽  
Rajini Nagarajan ◽  
Manja Kitek Kuzman

Gyroid structured green biocomposites with different thickness face layers (0.5, 1, 2 and 2.5 mm) were additively manufactured from wood/ polylactic acid (PLA) filaments using a 3D printer. The mechanical properties of the composite panels, bending properties, compressive strength (parallel to the surface), Brinell hardness, and face screw withdrawal resistance, were determined. The surface layer thickness significantly affects the mechanical properties of the composite materials. As the surface layer thickness was increased from 0.5 to 2.5 mm, all the mechanical properties significantly improved. In particular, the Brinell hardness and face screw withdrawal resistance of the specimens improved sharply when the skin thickness was higher than 2 mm. The bending strength, bending modulus, compressive strength (parallel to the surface), Brinell hardness, and face screw withdrawal resistance of the specimens with a skin of 0.5 mm were found to be 8.10, 847.5, 3.52, 2.12 and 445 N, respectively, while they were found to be 65.8, 11.82, 2492.2, 14.62, 26 and 1475 N for the specimens with a 2.5 mm skin. Based on the findings from the present study, gyroid structured composites with a thickness of 2 mm or higher are recommended due to their better mechanical properties as compared to the composites with skins that are thinner.


2020 ◽  
Vol 2020 (2) ◽  
pp. 3882-3886
Author(s):  
Martin Ovsik ◽  
Michal Stanek ◽  
Adam Dockal ◽  
Petr Fluxa

2019 ◽  
Author(s):  
Vânia Marecos ◽  
José Pedro Figueiredo ◽  
Simona Fontul ◽  
Mercedes Solla

Sign in / Sign up

Export Citation Format

Share Document