Structural and Optical Properties of Triclinic CuWO 4 Prepared by Solid‐State Reaction Technique

2019 ◽  
Vol 388 (1) ◽  
pp. 1900019
Author(s):  
Pritam Yadav ◽  
Ela Sinha
2016 ◽  
Vol 28 (2) ◽  
pp. 1889-1894 ◽  
Author(s):  
M. Jothibas ◽  
S. Johnson Jeyakumar ◽  
C. Manoharan ◽  
I. Kartharinal Punithavathy ◽  
P. Praveen ◽  
...  

2017 ◽  
Vol 5 (34) ◽  
pp. 8893-8900 ◽  
Author(s):  
Y. Katayama ◽  
T. Kayumi ◽  
J. Ueda ◽  
P. Dorenbos ◽  
B. Viana ◽  
...  

In this paper, Mn2+ and Ln3+ (Ln = Eu, Yb) co-doped MgGeO3 phosphors were prepared using a solid state reaction technique, and their optical properties were investigated.


2016 ◽  
Vol 675-676 ◽  
pp. 527-530
Author(s):  
Thanatep Phatungthane ◽  
Kachaporn Sanjoom ◽  
Denis Russell Sweatman ◽  
Buagun Samran ◽  
Chamnan Randorn ◽  
...  

In the present work, strontium iron niobate SrFe0.5Nb0.5O3 ceramics doped with aluminum were synthesized by a solid-state reaction technique. Phase formation investigation by X-ray diffraction technique (XRD) revealed that all ceramics exhibited pure perovskite phase with orthorhombic symmetry. Grain size observed by electron microscopy (SEM) was found to increase with increasing sintering temperature. The electrical properties and related parameters of the ceramics were also measured. The ceramics exhibit very good dielectric behavior and have a significant potential for dielectric applications.


2014 ◽  
Vol 6 (2) ◽  
pp. 217-231 ◽  
Author(s):  
F. Khatun ◽  
M. A. Gafur ◽  
M. S. Ali ◽  
M. S. Islam ◽  
M. A. R. Sarker

The lithium-cobalt oxide LixCoO2 is a promising candidate as highly active cathode material of lithium ion rechargeable batteries. The crystalline-layered lithium cobaltite has attracted increased attention due to recent discoveries of some extraordinary properties such as unconventional transport and magnetic properties. Due to layered crystal structure, Li contents (x) in LixCoO2 might play an important role on its interesting properties. LiCoO2 crystalline cathode material was prepared by using solid-state reaction synthesis, and then LixCoO2 (x<1) has been synthesized by deintercalation of produced single-phase powders. Structure and morphology of the synthesized powders were investigated by X-ray diffraction (XRD), Infrared spectroscopy, Impedance analyzer etc. The influence of lithium composition (x) on structural, electronic and optical properties of lithium cobaltite was studied. Temperature dependent electrical resistivity was measured using four-probe technique. While LixCoO2 with x = 0.9 is a semiconductor, the highly Li-deficient phase (0.75 ? x ? 0.5) exhibits metallic conductivity. The ionic conductivity of LixCoO2 (x = 0.5 – 1.15) was measured using impedance spectroscopy and maximum conductivity of Li0.5CoO2 was found to be 6.5×10-6 S/cm at 273 K. The properties that are important for applications, such as ionic conductivity, charge capacity, and optical absorption are observed to increase with Li deficiency. Keywords: Calcination; Characterization; Inorganic compounds; Solid-State reaction; X-ray diffraction. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v6i2.17900 J. Sci. Res. 6 (2), 217-231 (2014)  


Sign in / Sign up

Export Citation Format

Share Document