scholarly journals Customization of the Advanced Research Weather Research and Forecasting model over the Singapore region: impact of planetary boundary layer schemes, land use, land cover and model horizontal grid resolution

2019 ◽  
Vol 26 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Srikanth Madala ◽  
Santo V. Salinas ◽  
Jun Wang ◽  
Soo Chin Liew
Author(s):  
Alessio Golzio ◽  
Silvia Ferrarese ◽  
Claudio Cassardo ◽  
Gugliemina Adele Diolaiuti ◽  
Manuela Pelfini

AbstractWeather forecasts over mountainous terrain are challenging due to the complex topography that is necessarily smoothed by actual local-area models. As complex mountainous territories represent 20% of the Earth’s surface, accurate forecasts and the numerical resolution of the interaction between the surface and the atmospheric boundary layer are crucial. We present an assessment of the Weather Research and Forecasting model with two different grid spacings (1 km and 0.5 km), using two topography datasets (NASA Shuttle Radar Topography Mission and Global Multi-resolution Terrain Elevation Data 2010, digital elevation models) and four land-cover-description datasets (Corine Land Cover, U.S. Geological Survey land-use, MODIS30 and MODIS15, Moderate Resolution Imaging Spectroradiometer land-use). We investigate the Ortles Cevadale region in the Rhaetian Alps (central Italian Alps), focusing on the upper Forni Glacier proglacial area, where a micrometeorological station operated from 28 August to 11 September 2017. The simulation outputs are compared with observations at this micrometeorological station and four other weather stations distributed around the Forni Glacier with respect to the latent heat, sensible heat and ground heat fluxes, mixing-layer height, soil moisture, 2-m air temperature, and 10-m wind speed. The different model runs make it possible to isolate the contributions of land use, topography, grid spacing, and boundary-layer parametrizations. Among the considered factors, land use proves to have the most significant impact on results.


2011 ◽  
Vol 139 (6) ◽  
pp. 1762-1784 ◽  
Author(s):  
Sundararaman G. Gopalakrishnan ◽  
Frank Marks ◽  
Xuejin Zhang ◽  
Jian-Wen Bao ◽  
Kao-San Yeh ◽  
...  

Abstract Forecasting intensity changes in tropical cyclones (TCs) is a complex and challenging multiscale problem. While cloud-resolving numerical models using a horizontal grid resolution of 1–3 km are starting to show some skill in predicting the intensity changes in individual cases, it is not clear at this time what may be a reasonable horizontal resolution for forecasting TC intensity changes on a day-to-day-basis. The Experimental Hurricane Weather Research and Forecasting System (HWRFX) was used within an idealized framework to gain a fundamental understanding of the influence of horizontal grid resolution on the dynamics of TC vortex intensification in three dimensions. HWFRX is a version of the National Centers for Environmental Prediction (NCEP) Hurricane Weather Research and Forecasting (HWRF) model specifically adopted and developed jointly at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) and Earth System Research Laboratory (ESRL) for studying the intensity change problem at a model grid resolution of about 3 km. Based on a series of numerical experiments at the current operating resolution of about 9 km and at a finer resolution of about 3 km, it was found that improved resolution had very little impact on the initial spinup of the vortex. An initial axisymmetric vortex with a maximum wind speed of 20 m s−1 rapidly intensified to 50 m s−1 within about 24 h in either case. During the spinup process, buoyancy appears to have had a pivotal influence on the formation of the warm core and the subsequent rapid intensification of the modeled vortex. The high-resolution simulation at 3 km produced updrafts as large as 48 m s−1. However, these extreme events were rare, and this study indicated that these events may not contribute significantly to rapid deepening. Additionally, although the structure of the buoyant plumes may differ at 9- and 3-km resolution, interestingly, the axisymmetric structure of the simulated TCs exhibited major similarities. Specifically, the similarities included a deep inflow layer extending up to about 2 km in height with a tangentially averaged maximum inflow velocity of about 12–15 m s−1, vertical updrafts with an average velocity of about 2 m s−1, and a very strong outflow produced at both resolutions for a mature storm. It was also found in either case that the spinup of the primary circulation occurred not only due to the weak inflow above the boundary layer but also due to the convergence of vorticity within the boundary layer. Nevertheless, the mature phase of the storm’s evolution exhibited significantly different patterns of behavior at 9 and 3 km. While the minimum pressure at the end of 96 h was 934 hPa for the 9-km simulation, it was about 910 hPa for the 3-km run. The maximum tangential wind at that time showed a difference of about 10 m s−1. Several sensitivity experiments related to the initial vortex intensity, initial radius of the maximum wind, and physics were performed. Based on ensembles of simulations, it appears that radial advection of the tangential wind and, consequently, radial flux of vorticity become important forcing terms in the momentum budget of the mature storm. Stronger convergence in the boundary layer leads to a larger transport of moisture fluxes and, subsequently, a stronger storm at higher resolution.


Sign in / Sign up

Export Citation Format

Share Document