Continuous dependence on the time and spatial geometry for the equations of thermoelasticity

1989 ◽  
Vol 11 (3) ◽  
pp. 317-329 ◽  
Author(s):  
J. C. Song ◽  
L. E. Payne
Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 59
Author(s):  
Bruno Carbonaro ◽  
Marco Menale

A complex system is a system involving particles whose pairwise interactions cannot be composed in the same way as in classical Mechanics, i.e., the result of interaction of each particle with all the remaining ones cannot be expressed as a sum of its interactions with each of them (we cannot even know the functional dependence of the total interaction on the single interactions). Moreover, in view of the wide range of its applications to biologic, social, and economic problems, the variables describing the state of the system (i.e., the states of all of its particles) are not always (only) the usual mechanical variables (position and velocity), but (also) many additional variables describing e.g., health, wealth, social condition, social rôle ⋯, and so on. Thus, in order to achieve a mathematical description of the problems of everyday’s life of any human society, either at a microscopic or at a macroscpoic scale, a new mathematical theory (or, more precisely, a scheme of mathematical models), called KTAP, has been devised, which provides an equation which is a generalized version of the Boltzmann equation, to describe in terms of probability distributions the evolution of a non-mechanical complex system. In connection with applications, the classical problems about existence, uniqueness, continuous dependence, and stability of its solutions turn out to be particularly relevant. As far as we are aware, however, the problem of continuous dependence and stability of solutions with respect to perturbations of the parameters expressing the interaction rates of particles and the transition probability densities (see Section The Basic Equations has not been tackled yet). Accordingly, the present paper aims to give some initial results concerning these two basic problems. In particular, Theorem 2 reveals to be stable with respect to small perturbations of parameters, and, as far as instability of solutions with respect to perturbations of parameters is concerned, Theorem 3 shows that solutions are unstable with respect to “large” perturbations of interaction rates; these hints are illustrated by numerical simulations that point out how much solutions corresponding to different values of parameters stay away from each other as t→+∞.


Author(s):  
Thierry Cazenave ◽  
Daoyuan Fang ◽  
Zheng Han

2021 ◽  
Vol 9 (3) ◽  
pp. 256
Author(s):  
Wei Liu ◽  
Hao Tang ◽  
Xinxing You ◽  
Shuchuang Dong ◽  
Liuxiong Xu ◽  
...  

The codend of a trawl net is the rearmost and crucial part of the net for selective fish catch and juvenile escape. To ensure efficient and sustainable midwater trawl fisheries, it is essential to better understand the drag characteristics and fluttering motions of a midwater trawl codend. These are generally affected by catch, cutting ratio, mesh size, and twine diameter. In this study, six nylon codend models with different cutting ratios (no cutting, 6:1, 5:1, 4:1, 7:2, and 3:1) were designed and tested in a professional flume tank under two conditions (empty codends and codends with catch) and five current speeds to obtain the drag force, spatial geometry, and movement trend. As the cutting ratio of empty codends decreased, the drag force decreased, and the drag coefficient increased. The unfolding degree of codend netting and the height of empty codends were found to be directly proportional to the current speed and inversely proportional to the cutting ratio. The positional amplitude of codend with cutting ratio 4:1 was the smallest for catch. The drag force of codends with catch increased as the current speed increased, and first decreased and then increased as the cutting ratio decreased. To ensure the best stability and minimum drag force of the codend, it is recommended to use the 4:1 cutting ratio codend.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 851
Author(s):  
Robert Stegliński

In the present paper we give conditions under which there exists a unique weak solution for a nonlocal equation driven by the integrodifferential operator of fractional Laplacian type. We argue for the optimality of some assumptions. Some Lyapunov-type inequalities are given. We also study the continuous dependence of the solution on parameters. In proofs we use monotonicity and variational methods.


Procedia CIRP ◽  
2021 ◽  
Vol 96 ◽  
pp. 74-79
Author(s):  
Alex Grenyer ◽  
Oliver Schwabe ◽  
John A. Erkoyuncu ◽  
Yifan Zhao

Sign in / Sign up

Export Citation Format

Share Document