Initial layers and zero-relaxation limits of multidimensional Euler-Poisson equations

2012 ◽  
Vol 36 (2) ◽  
pp. 182-195 ◽  
Author(s):  
Mohamed-Lasmer Hajjej ◽  
Yue-Jun Peng
Author(s):  
My Kieu ◽  
Andrew D. Bagdanov ◽  
Marco Bertini

Pedestrian detection is a canonical problem for safety and security applications, and it remains a challenging problem due to the highly variable lighting conditions in which pedestrians must be detected. This article investigates several domain adaptation approaches to adapt RGB-trained detectors to the thermal domain. Building on our earlier work on domain adaptation for privacy-preserving pedestrian detection, we conducted an extensive experimental evaluation comparing top-down and bottom-up domain adaptation and also propose two new bottom-up domain adaptation strategies. For top-down domain adaptation, we leverage a detector pre-trained on RGB imagery and efficiently adapt it to perform pedestrian detection in the thermal domain. Our bottom-up domain adaptation approaches include two steps: first, training an adapter segment corresponding to initial layers of the RGB-trained detector adapts to the new input distribution; then, we reconnect the adapter segment to the original RGB-trained detector for final adaptation with a top-down loss. To the best of our knowledge, our bottom-up domain adaptation approaches outperform the best-performing single-modality pedestrian detection results on KAIST and outperform the state of the art on FLIR.


Electrochem ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 197-215
Author(s):  
Jerzy J. Jasielec

This work is aimed to give an electrochemical insight into the ionic transport phenomena in the cellular environment of organized brain tissue. The Nernst–Planck–Poisson (NPP) model is presented, and its applications in the description of electrodiffusion phenomena relevant in nanoscale neurophysiology are reviewed. These phenomena include: the signal propagation in neurons, the liquid junction potential in extracellular space, electrochemical transport in ion channels, the electrical potential distortions invisible to patch-clamp technique, and calcium transport through mitochondrial membrane. The limitations, as well as the extensions of the NPP model that allow us to overcome these limitations, are also discussed.


2019 ◽  
Vol 70 (1) ◽  
pp. 9-19
Author(s):  
Jianwei Dong ◽  
Junhui Zhu ◽  
Yanping Wang

2016 ◽  
Vol 57 (7) ◽  
pp. 071505 ◽  
Author(s):  
Rui Li ◽  
Xing Lin ◽  
Zongwei Ma
Keyword(s):  

VLSI Design ◽  
1998 ◽  
Vol 8 (1-4) ◽  
pp. 105-109 ◽  
Author(s):  
A. Trellakis ◽  
A. T. Galick ◽  
A. Pacelli ◽  
U. Ravaioli

We present a fast and robust iterative method for obtaining self-consistent solutions to the coupled system of Schrödinger's and Poisson's equations in quantum structures. A simple expression describing the dependence of the quantum electron density on the electrostatic potential is used to implement a predictor – corrector type iteration scheme for the solution of the coupled system of differential equations. This approach simplifies the software implementation of the nonlinear problem, and provides excellent convergence speed and stability. We demonstrate the algorithm by presenting an example for the calculation ofthe two-dimensional bound electron states within the cross-section of a GaAs-AlGaAs based quantum wire. For this example, six times fewer iterations are needed when our predictor – corrector approach is applied, compared to a corresponding underrelaxation algorithm.


2013 ◽  
Vol 45 (2) ◽  
pp. 547-571 ◽  
Author(s):  
Zhong Tan ◽  
Tong Yang ◽  
Huijiang Zhao ◽  
Qingyang Zou

Sign in / Sign up

Export Citation Format

Share Document