A numerical method for variable‐order fractional version of the coupled 2D Burgers equations by the 2D Chelyshkov polynomials

Author(s):  
M. Hosseininia ◽  
M. H. Heydari ◽  
F. M. Maalek Ghaini
1980 ◽  
Vol 70 (1) ◽  
pp. 79-99 ◽  
Author(s):  
V. Pereyra ◽  
W. H. K. Lee ◽  
H. B. Keller

abstract A study of two-point seismic-ray tracing problems in a heterogeneous isotropic medium and how to solve them numerically will be presented in a series of papers. In this Part 1, it is shown how a variety of two-point seismic-ray tracing problems can be formulated mathematically as systems of first-order nonlinear ordinary differential equations subject to nonlinear boundary conditions. A general numerical method to solve such systems in general is presented and a computer program based upon it is described. High accuracy and efficiency are achieved by using variable order finite difference methods on nonuniform meshes which are selected automatically by the program as the computation proceeds. The variable mesh technique adapts itself to the particular problem at hand, producing more detailed computations where they are needed, as in tracing highly curved seismic rays. A complete package of programs has been produced which use this method to solve two- and three-dimensional ray-tracing problems for continuous or piecewise continuous media, with the velocity of propagation given either analytically or only at a finite number of points. These programs are all based on the same core program, PASVA3, and therefore provide a compact and flexible tool for attacking ray-tracing problems in seismology. In Part 2 of this work, the numerical method is applied to two- and three-dimensional velocity models, including models with jump discontinuities across interfaces.


Author(s):  
Lei Zhang ◽  
Chaofeng Zhang ◽  
Mengya Liu

According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial, a variable-order and variable-step-size numerical method for solving differential equations is designed. The stability properties of the formulas are discussed and the stability regions are analyzed. The deduced methods are applied to a simulation problem. The results show that the numerical method can satisfy calculation accuracy, reduce the number of calculation steps and accelerate calculation speed.


2019 ◽  
Vol 18 (6) ◽  
pp. 1491-1514
Author(s):  
Yuri Bychkov ◽  
Elena Solovyeva ◽  
Sergei Scherbakov

This paper proposes an algorithm for calculating approximate values of  roots of algebraic equations with a specified limit of absolute errors. A mathematical basis of the algorithm is an analytical-numerical method of solving nonlinear integral-differential equations with non-stationary coefficients. The analytical-numerical method belongs to the class of one-step continuous methods of variable order with an adaptive procedure for choosing a calculation step, a formalized estimate of the error of the performed calculations at each step and the error accumulated during the calculation. The proposed algorithm for calculating the approximate values of the roots of an algebraic equation with specified limit absolute errors consists of two stages. The results of the first stage are numerical intervals containing the unknown exact values of the roots of the algebraic equation. At the second stage, the approximate values of these roots with the specified limit absolute errors are calculated. As an example of the use of the proposed algorithm, defining the roots of the fifth-order algebraic equation with three different values of the limiting absolute error is presented. The obtained results allow drawing the following conclusions. The proposed algorithm enables to select numeric intervals that contain unknown exact values of the roots. Knowledge of these intervals facilitates the calculation of the approximate root values under any specified limiting absolute error. The algorithm efficiency, i.e., the guarantee of achieving the goal, does not depend on the choice of initial conditions. The algorithm is not iterative, so the number of calculation steps required for extracting a numerical interval containing an unknown exact value of any root of an algebraic equation is always restricted. The algorithm of determining a certain root of the algebraic equation is computationally completely autonomous.


Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040047
Author(s):  
SACHIN KUMAR ◽  
PRASHANT PANDEY ◽  
J. F. GÓMEZ-AGUILAR ◽  
D. BALEANU

Our motive in this scientific contribution is to deal with nonlinear reaction–diffusion equation having both space and time variable order. The fractional derivatives which are used are non-singular having exponential kernel. These derivatives are also known as Caputo–Fabrizio derivatives. In our model, time fractional derivative is Caputo type while spatial derivative is variable-order Riesz fractional type. To approximate the variable-order time fractional derivative, we used a difference scheme based upon the Taylor series formula. While approximating the variable order spatial derivatives, we apply the quasi-wavelet-based numerical method. Here, double-quasi-wavelet numerical method is used to investigate this type of model. The discretization of boundary conditions with the help of quasi-wavelet is discussed. We have depicted the efficiency and accuracy of this method by solving the some particular cases of our model. The error tables and graphs clearly show that our method has desired accuracy.


Sign in / Sign up

Export Citation Format

Share Document