An orbital angular momentum vortex wave antenna with low in‐band radar cross section and reduced divergence angle

Author(s):  
Xin‐hong Li
Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jianchun Xu ◽  
Ke Bi ◽  
Ru Zhang ◽  
Yanan Hao ◽  
Chuwen Lan ◽  
...  

Electromagnetic waves carrying an orbital angular momentum (OAM) are of great interest. However, most OAM antennas present disadvantages such as a complicated structure, low efficiency, and large divergence angle, which prevents their practical applications. So far, there are few papers and research focuses on the problem of the divergence angle. Herein, a metasurface antenna is proposed to obtain the OAM beams with a small divergence angle. The circular arrangement and phase gradient were used to simplify the structure of the metasurface and obtain the small divergence angle, respectively. The proposed metasurface antenna presents a high transmission coefficient and effectively decreases the divergence angle of the OAM beam. All the theoretical analyses and derivation calculations were validated by both simulations and experiments. This compact structure paves the way to generate OAM beams with a small divergence angle.


Open Physics ◽  
2010 ◽  
Vol 8 (6) ◽  
Author(s):  
Aleksandr Bekshaev

AbstractA ray-optics model is proposed to describe the vector beam transformation in a strongly focusing optical system. In contrast to usual approaches based on the focused field distribution near the focal plane, we use the beam pattern formed immediately after the exit aperture. In this cross section, details of the output field distribution are of minor physical interest but proper allowance is made for transformation of the beam polarization state. This enables the spin and orbital angular momentum representations to be obtained, which are valid for any cross section of the transformed beam. Simple analytical results are available for a transversely homogeneous, circularly polarized incident beam confined by a circular aperture. Variations of the spin and orbital angular momenta of the output beam with change of the focusing strength are analyzed. The analytical results are in good qualitative and reasonable quantitative agreement with the results of numerical calculations performed for the Gaussian and Laguerre-Gaussian beams. The model supplies an efficient and physically transparent means for qualitative analysis of the spin-to-orbital angular momentum conversion. It can be generalized to incident beams with complex spatial and polarization structure.


2004 ◽  
Author(s):  
Eugene F. Knott ◽  
John F. Shaeffer ◽  
Michael T. Tuley

2020 ◽  
Vol E103.B (8) ◽  
pp. 852-859
Author(s):  
Thanh-Binh NGUYEN ◽  
Naoyuki KINAI ◽  
Naobumi MICHISHITA ◽  
Hisashi MORISHITA ◽  
Teruki MIYAZAKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document