divergence angle
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 62)

H-INDEX

15
(FIVE YEARS 3)

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Lihuan Chen ◽  
Muzheng Cheng ◽  
Yi Cai ◽  
Liwen Guo ◽  
Dianrong Gao

The technology of increasing coal seam permeability by high-pressure water jet has significant advantages in preventing and controlling gas disasters in low-permeability coal seam. The structural parameters of a nozzle are the key to its jet performance. The majority of the current studies take strike velocity as the evaluation index, and the influence of the interaction between the nozzle’s structural parameters on its jet performance is not fully considered. In practice, strike velocity and strike area will affect gas release in the process of coal breaking and punching. To further optimize the structural parameters of coal breaking and punching nozzle, and improve water jet performance, some crucial parameters such as the contraction angle, outlet divergence angle, and length-to-diameter ratio are selected. Meanwhile, the maximum X-axis velocity and effective Y-axis extension distance are used as evaluation indexes. The effect of each key factor on the water jet performance is analyzed by numerical simulation using the single factor method. The significance and importance effect of each factor and their interaction on the water jet performance are quantitatively analyzed using the orthogonal experiment method. Moreover, three optimal combinations are selected for experimental verification. Results show that with an increase in contraction angle, outlet divergence angle, and length-to-diameter ratio, the maximum X-axis velocity increases initially and decreases thereafter. The Y-direction expansion distance of the jet will be improved significantly with an increase in the outlet divergence angle. Through field experiments, the jet performance of the improved nozzle 3 is the best. After optimization, the coal breaking and punching diameter of the nozzle is increased by 118%, and the punching depth is increased by 17.46%.


2021 ◽  
Author(s):  
Jie Fu ◽  
Shaofei Wang ◽  
Guofeng Zheng ◽  
Peng Zhang

Author(s):  
Shailesh Singh ◽  
Arun Rajagopal

Abstract The present study investigates the fluid dynamics and performance characteristics in micro nozzle flows with changes in various geometric parameters using Navier-Stokes simulation based on slip wall boundary conditions. The various geometric parameters considered for the study are 1) area ratio with fixed throat dimension and 2) the semi-divergence angle variation with no change in area ratio. The simulation results show that the flow choking for micro nozzle happens not at the geometric throat; rather pushed downstream to the divergent channel of the nozzle. This is due to the thick boundary layer growth which reduces the effective flow area and shifts the minimum allowable flow area downstream to the throat. The distance to which the choking point shifts downstream to the throat reduces with Maxwell's slip wall conditions compared to the conventional no-slip wall condition. The downstream movement of the choking point from the throat reduces with an increase in area ratio and with increase in divergence angle with fixed area ratio. This is due the fact that the increase in area ratio and divergence angle increases the nozzle height at any particular section in the divergent portion of the nozzle. As a result of this, the boundary layer profile also moves upward and the restriction of potential core by the thick boundary layer reduces which in turn leads to an increase in the effective minimum flow area downstream to the throat.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Huong T. T. Nguyen ◽  
Hoai-Duc Vu ◽  
Jichul Shin

Phenomenological behavior of ion beam acceleration through the grid system in 50 W class RF ion thruster has been investigated using PIC simulation and evaluated by experimental test using Faraday probe. Beam trajectory for various grid voltages reveals that the metal engine cover of the ion thruster which is needed to seal RF coil around the discharge chamber affects the beam divergence angle. Simulation result shows that the divergence angle increases by 10.52% mainly because of the larger radial electric field in the presence of the metal engine cover. The divergence angle increases as the accelerator grid voltage increases. The current density distribution measured by the Faraday probe shows a bigger divergence angle with the engine cover installed. For the test cases with mass flow rates from 3 sccm to 4 sccm at the RF power of about 50 W, the current density distribution exhibits the 2nd peak at the radial position about 4 cm from the centerline.


2021 ◽  
Vol 141 ◽  
pp. 107145
Author(s):  
Yuxian Liu ◽  
Guowen Yang ◽  
Zhenfu Wang ◽  
Te Li ◽  
Song Tang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5233
Author(s):  
Janesh N. Mohanan ◽  
Kumaravel Sundaramoorthy ◽  
Ashok Sankaran

This paper examines the performance of conical sections (concentrator and diffuser) to improve the energy-recovery prospects of small-scale wind turbines. Detailed simulation studies of the conical sections with convergence angle viz., concentrator, and divergence angle viz., diffuser were conducted using ANSYS Fluent® software. Using simulation data, a trend analysis was conducted, and the empirical equations were derived for calculating the velocity variation and power variation in terms of the convergence/divergence angles. Working prototype models with optimum angles were fabricated for both the diffuser and concentrator. These models were then augmented with a wind turbine coupled with a 100 W, 24 V DC generator and tested to validate the simulation results. Upon analyzing the simulation data, it was found that a maximum velocity variation of 23.3% was achieved at an angle of 4.5° for the diffuser, whereas a maximum power variation of 65.1% was achieved at an angle of 3.6° for the same diffuser. The aforementioned improvement was achieved by optimizing divergence angle alone. The proposed designs of the diffuser- and concentrator-augmented wind turbine, as well as the empirical equations for calculating the velocity variation and power variation in terms of the divergence and convergence angle, are the major contributions of this article.


Author(s):  
Qingkuo Li ◽  
Yingjie Zhang ◽  
Yi Wang ◽  
Ge Han ◽  
Yanfeng Zhang ◽  
...  

Vaned diffuser inlet flow uniform is challenging when the impeller is throttled to stall. In this study, we extend the stable operating range of the compressor by improving the uniform flow of the diffuser inlet. First, a numerical investigation of a transonic centrifugal compressor with a vaned diffuser is presented and compared against test data. Then, a new diffuser parameterization method is pro- posed, and the throat feature of a pipe diffuser is successfully applied to parameterized vane diffusers. The influence of the throat length and divergence angle of the diffuser on the performance of the centrifugal compressor is studied via steady and non-linear harmonic simulations. Throat length delays the time of fluid pressurization and accommodates large flow instabilities from upstream—this widens the stall margin but increases mixing loss. Divergence angle affects compressor performance. Stage peak efficiency increases by about 0.58% as the divergence angle increases from 3.79° to 5.79° but drops to about 2.46% as the divergence angle further increases from 5.79° to 11.79°. This is because the boundary layers in the diffuser channel thicken with increasing divergence angle; additionally, the fluid near the hub-pressure side first becomes unstable, then flow separation occurs along the flow direction, which results in a large flow loss. Detailed performance maps of centrifugal compressors with different throat lengths and divergence angles are given to provide a reference for designing transonic centrifugal compressors.


Sign in / Sign up

Export Citation Format

Share Document