A wideband single-layer crossover using substrate integrated waveguide to grounded coplanar waveguide transition

2017 ◽  
Vol 59 (11) ◽  
pp. 2757-2762 ◽  
Author(s):  
Alireza Bagheri ◽  
Gholamreza Moradi
Author(s):  
Keyur Mahant ◽  
Hiren Mewada ◽  
Amit Patel ◽  
Alpesh Vala ◽  
Jitendra Chaudhari

Aim: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed Objective: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed. Method: Coupling patch etched on the SIW cavity to couple the electromagnetic energy from SIW to RWG. Moreover, metasurface is introduced into the radiating patch to enhance bandwidth. To verify the functionality of the proposed structure back to back transition is designed and fabricated on a single layer substrate using standard printed circuit board (PCB) fabrication technology. Results: Measured results matches with the simulation results, measured insertion loss is less than 1.2 dB and return loss is better than 3 dB for the frequency range of 28.8 to 36.3 GHz. By fabricating transition with 35 SRRs bandwidth of the proposed transition can be improved. Conclusion: The proposed transition has advantages like compact in size, easy to fabricate, low cost and wide bandwidth. Proposed structure is a good candidate for millimeter wave circuits and systems.


Author(s):  
Kevin Erkelenz ◽  
Lennart P. P. B. Bohl ◽  
Anton Sieganschin ◽  
Arne F. Jacob

2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Sahar Chagharvand ◽  
M. R. B. Hamid ◽  
M. R. Kamarudin ◽  
Mohsen Khalily

This paper presents a single layer planar slot antenna for dual band operation. The antenna is fed by a coplanar waveguide (CPW) with two inverted C-shaped resonators to achieve the dual band operation. The impedance bandwidth for ǀS11ǀ < -10dB is 14% in lower band and 7% in higher band. The antenna prototype’s electromagnetic performance, impedance bandwidth, radiation pattern, and antenna gain were measured. The proposed configuration offers a relatively compact, easy to fabricate and dual band performance providing gain between 2 and 4 dBi. The designed antenna has good dual bandwidth covering 3.5 WiMAX and 5.8 WLAN tasks. Experimental and numerical results also showed good agreement after comparison.


Sign in / Sign up

Export Citation Format

Share Document