A Novel Wideband transition from Substrate Integrated Waveguide to Rectangular Waveguide

Author(s):  
Keyur Mahant ◽  
Hiren Mewada ◽  
Amit Patel ◽  
Alpesh Vala ◽  
Jitendra Chaudhari

Aim: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed Objective: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed. Method: Coupling patch etched on the SIW cavity to couple the electromagnetic energy from SIW to RWG. Moreover, metasurface is introduced into the radiating patch to enhance bandwidth. To verify the functionality of the proposed structure back to back transition is designed and fabricated on a single layer substrate using standard printed circuit board (PCB) fabrication technology. Results: Measured results matches with the simulation results, measured insertion loss is less than 1.2 dB and return loss is better than 3 dB for the frequency range of 28.8 to 36.3 GHz. By fabricating transition with 35 SRRs bandwidth of the proposed transition can be improved. Conclusion: The proposed transition has advantages like compact in size, easy to fabricate, low cost and wide bandwidth. Proposed structure is a good candidate for millimeter wave circuits and systems.

2018 ◽  
Vol 10 (8) ◽  
pp. 896-903 ◽  
Author(s):  
Amit Ranjan Azad ◽  
Dharmendra Kumar Jhariya ◽  
Akhilesh Mohan

AbstractThis paper presents a substrate-integrated waveguide (SIW) mixed electric and magnetic coupling structure implemented on a single-layer substrate to create finite transmission zeros (TZs), which can be used to design microwave filters with higher frequency selectivity. Mixed coupling is realized by three slot-lines on the top metal plane combined with an iris-window between two adjacent SIW cavities. The electric and magnetic coupling can be separately controlled by adjusting the dimensions of the slot-lines and the width of the iris-window, and a controllable TZ below or above the passband can be produced. Furthermore, a detailed analysis of the mixed coupling structure is presented. To demonstrate the validity of the proposed structure, third- and fourth-order cross-coupled generalized Chebyshev bandpass filters are designed and fabricated using the standard printed circuit board process. The experimental results are in good agreement with the simulation results. The filters exhibit simple structure and good frequency selectivity.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Li-Ming Si ◽  
Yong Liu ◽  
Yongjun Huang ◽  
Weiren Zhu

A slot-microstrip-covered and waveguide-cavity-backed monopulse antenna array is proposed for high-resolution tracking applications at Ka-band. The monopulse antenna array is designed with a microstrip with2×32slots, a waveguide cavity, and a waveguide monopulse comparator, to make the structure simple, reduce the feeding network loss, and increase the frequency bandwidth. The2×32slot-microstrip elements are formed by a metal clad dielectric substrate and slots etched in the metal using the standard printed circuit board (PCB) process with dimensions of 230 mm  ×  10 mm. The proposed monopulse antenna array not only maintains the advantages of the traditional waveguide slot antenna array, but also has the characteristics of wide bandwidth, high consistence, easy of fabrication, and low cost. From the measured results, it exhibits good monopulse characteristics, including the following: the maximum gains of sum pattern are greater than 24 dB, the 3 dB beamwidth of sum pattern is about 2.2 degrees, the sidelobe levels of the sum pattern are less than −18 dB, and the null depths of the difference pattern are less than −25 dB within the operating bandwidth between 33.65 GHz and 34.35 GHz for VSWR ≤ 2.


2013 ◽  
Vol 760-762 ◽  
pp. 174-177
Author(s):  
Yi Hong Zhou ◽  
Hai Yang Wang ◽  
Jia Yin Li

Based on a linearly tapered antipodal finline, a novel low-loss wideband transition between waveguide and substrate integrated waveguide (SIW) is discussed. Results show that a low insertion loss (1.2-2.1dB) and a return loss better than 15dB across the entire Ka-band are obtained for a back-to-back transition structure.


2012 ◽  
Vol 443-444 ◽  
pp. 362-365 ◽  
Author(s):  
Ya Zhou Dong ◽  
Shi Wei Dong ◽  
Zhong Bo Zhu ◽  
Ying Wang

This paper presents novel designs of Ka band transitions between standard rectangular waveguide and substrate integrated waveguide (SIW). The proposed transitions can provide simultaneous field and impedance matching. The transition with a height-tapered waveguide exhibits outstanding low-loss performance over an ultra-wideband range (entire Ka-band). And the other one with Chebyshev transformers has a compact profile and low loss better than 2dB in a bandwidth of 11GHz at Ka band. The simulation and analysis of the transitions are carried out with Ansoft HFSS.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 338
Author(s):  
Linfeng Li ◽  
Jie-Bang Yan

A microstrip-fed air-substrate-integrated waveguide (ASIW) slot array with high efficiency and low cost is presented. The design cuts out the substrate material within SIW, replaces the vias with metallic sidewalls, and uses a simple microstrip line-waveguide transition to feed the slot array. Radiating slots are cut on a 5-mil brass-plate, which covers the top of the substrate cutout to resemble a hollow waveguide structure. This implementation provides a simple and efficient antenna array solution for millimeter-wave (mm-wave) applications. Meanwhile, the fabrication is compatible with the standard printed circuit board (PCB) manufacturing process. To demonstrate the concept, a 4-element ASIW slot array working at the n257 band for 5G communications was designed using low-cost Rogers 4350B and FR4 substrate materials. Our simulation result shows 18% more efficiency than a conventional SIW slot array using the same substrate. The fabricated prototype shows |S11| < −15 dB over 27–29 GHz and a peak realized gain of 10.1 dBi at 28.6 GHz. The design procedure, prototyping process, and design analysis are discussed in the paper.


2020 ◽  
Vol 10 (22) ◽  
pp. 8101
Author(s):  
David Herraiz ◽  
Héctor Esteban ◽  
Juan A. Martínez ◽  
Angel Belenguer ◽  
Santiago Cogollos ◽  
...  

In recent years, multiple technologies have been proposed with the aim of combining the characteristics of traditional planar and non-planar transmission lines. The first and most popular of these technologies is the Substrate Integrated Waveguide (SIW), where rows of metallic vias are mechanized in a printed circuit board (PCB). These vias, together with the top and bottom metal layers of the PCB, form a channel for the propagation of the electromagnetic fields, similar to that of a rectangular waveguide, but through a dielectric body, which increases the losses. To reduce these losses, the empty substrate integrated waveguide (ESIW) was recently proposed. In the ESIW, the dielectric is removed from the substrate, and this results in better performance (low profile and easy manufacturing as in SIW, but lower losses and better quality factor for resonators). Recently, to increase the operational bandwidth (monomode propagation) of the ESIW, the ridge ESIW (RESIW) and a transition from RESIW to microstrip line was proposed. In this work, a new and improved wideband transition from microstrip line (MS) to RESIW, with a dielectric taper based on the equations of the superellipse, is proposed. The new wideband transition presents simulated return losses in a back-to-back transition greater than 20 dB in an 87% fractional bandwidth, while in the previous transition the fractional bandwidth was 82%. This is an increment of 5%. In addition, the transition presents simulated return losses greater than 26 dB in an 84% fractional bandwidth. For validation purposes, a back-to-back configuration of the new transition was successfully manufactured and measured. The measured return loss is better than 14 dB with an insertion loss lower than 1 dB over the whole band.


2021 ◽  
Vol 11 (15) ◽  
pp. 6885
Author(s):  
Marcos D. Fernandez ◽  
José A. Ballesteros ◽  
Angel Belenguer

Empty substrate integrated coaxial line (ESICL) technology preserves the many advantages of the substrate integrated technology waveguides, such as low cost, low profile, or integration in a printed circuit board (PCB); in addition, ESICL is non-dispersive and has low radiation. To date, only two transitions have been proposed in the literature that connect the ESICL to classical planar lines such as grounded coplanar and microstrip. In both transitions, the feeding planar lines and the ESICL are built in the same substrate layer and they are based on transformed structures in the planar line, which must be in the central layer of the ESICL. These transitions also combine a lot of metallized and non-metallized parts, which increases the complexity of the manufacturing process. In this work, a new through-wire microstrip-to-ESICL transition is proposed. The feeding lines and the ESICL are implemented in different layers, so that the height of the ESICL can be independently chosen. In addition, it is a highly compact transition that does not require a transformer and can be freely rotated in its plane. This simplicity provides a high degree of versatility in the design phase, where there are only four variables that control the performance of the transition.


Author(s):  
Anton Sieganschin ◽  
Thomas Jaschke ◽  
Arne F. Jacob

Abstract This contribution deals with a frontend for interleaved receive (Rx)-/transmit (Tx)-integrated phased arrays at K-/Ka-band. The circuit is realized in printed circuit board technology and feeds dual-band Rx/Tx- and single-band Tx-antenna elements. The dual-band element feed is composed of a substrate-integrated waveguide (SIW) diplexer with low insertion loss, a low-noise amplifier (LNA), a bandpass filter, and several passive transitions. The compression properties of the LNA are identified through two-tone measurements. The results dictate the maximum allowable output power of the power amplifier. The single band feed consists of a SIW with several transitions. Simulation and measurement results of the individual components are presented. The frontend is assembled and measured. It exhibits an Rx noise figure of 2 dB, a Tx insertion loss of ~ 2.9 dB, and an Rx/Tx-isolation of 70 dB. The setup represents the unit cell of a full array and thus complies with the required half-wave spacing at both Rx and Tx.


Sign in / Sign up

Export Citation Format

Share Document