Compact dual‐band bandpass filter with high‐passband isolation using coupled lines and open stub

Author(s):  
Simhadri Kishore ◽  
Ayan Arora ◽  
Kanaparthi V. Phani Kumar ◽  
Vamsi Krishna Velidi ◽  
Chittaranjan Nayak ◽  
...  
Frequenz ◽  
2017 ◽  
Vol 71 (11-12) ◽  
Author(s):  
Jin Xu ◽  
Yan Zhu ◽  
Yong-Qian Du

AbstractThis paper presents a compact quad-band bandpass filter (QB-BPF) using double-diplexing structure, which consists of two channel filters and a pair of modified manifold-coupled lines. Each channel filter is realized by the asymmetrical coupling shorted stub loaded stepped-impedance resonator (SSLSIR) dual-band bandpass filter (DB-BPF), and the modified manifold line constructed by lumped elements is proposed to connect two channel filters to constitute the QB-BPF. The fabricated QB-BPF occupies a compact circuit size of 0.178λ


2015 ◽  
Vol 25 (4) ◽  
pp. 235-237 ◽  
Author(s):  
Yatao Peng ◽  
Lijun Zhang ◽  
Jun Fu ◽  
Yudong Wang ◽  
Yongqing Leng

2021 ◽  
Vol 9 (2) ◽  
pp. 83-90
Author(s):  
Salah I. Yahya ◽  
Abbas Rezaei ◽  
Yazen A. Khaleel

A novel configuration of a dual-band bandpass filter (BPF) working as a harmonic attenuator is introduced and fabricated. The proposed filter operates at 3 GHz, for UHF and SHF applications, and 6.3 GHz, for wireless applications. The presented layout has a symmetric structure, which consists of coupled resonators. The designing of the proposed resonator is performed by introducing a new LC equivalent model of coupled lines. To verify the LC model of the coupled lines, the lumped elements are calculated. The introduced filter has a wide stopband up to 85 GHz with 28th harmonic suppression, for the first channel, and 13th harmonic suppression, for the second channel. The harmonics are attenuated using a novel structure. Also, the proposed BPF has a compact size of 0.056 λg2. Having several transmission zeros (TZs) that improve the performance of the presented BPF is another feature. The proposed dual-band BPF is fabricated and measured to verify the design method, where the measurement results confirm the simulations.


2020 ◽  
Vol 56 (14) ◽  
pp. 721-724 ◽  
Author(s):  
Donghao Li ◽  
Kai‐Da Xu

2013 ◽  
Vol 655-657 ◽  
pp. 1555-1561
Author(s):  
Wen Ko ◽  
Man Long Her ◽  
Ming Wei Hsu ◽  
Yu Lin Wang

This study proposes a circuit structure with reconfigurable multiple bands bandpass filter. This circuit can provide a triple-band or dual-band bandpass facility by adjusting two open stubs (L6 and L7) location. The circuit design used three sections of transmission line in series, the two sets of the coupled lines connected to the gap in each transmission line, and two open stubs in the appropriate locations. The design and manufacturing of the circuit structure is innovative and simple. The center frequencies of the triple-band bandpass filter are set at 2.4, 4.2, and 6.5 GHz, respectively, while the center frequencies of the dual-band bandpass filter are the two lower pass band of the triple-band bandpass filter at 2.4 and 4.2GHz. The filters were simulated using the full-wave electromagnetic simulator, IE3D, and measured by Anritsu-37269D. The simulated and measured results show good agreement in the frequency of interest.


2012 ◽  
Vol 32 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Xinwei Chen ◽  
Li Li ◽  
Yi Zhang ◽  
Yanfeng Geng ◽  
Wenmei Zhang

Author(s):  
Imane Halkhams ◽  
Said Mazer ◽  
Mahmoud Mehdi ◽  
Moulhime El Bekkali ◽  
Wafae El Hamdani

Sign in / Sign up

Export Citation Format

Share Document