Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model

2018 ◽  
Vol 46 (1) ◽  
pp. 215-228 ◽  
Author(s):  
Yuzhou Hu ◽  
Yi Guo ◽  
Yuanyuan Wang ◽  
Jinhua Yu ◽  
Jiawei Li ◽  
...  
Sensor Review ◽  
2019 ◽  
Vol 39 (4) ◽  
pp. 473-487 ◽  
Author(s):  
Ayalapogu Ratna Raju ◽  
Suresh Pabboju ◽  
Ramisetty Rajeswara Rao

Purpose Brain tumor segmentation and classification is the interesting area for differentiating the tumorous and the non-tumorous cells in the brain and classifies the tumorous cells for identifying its level. The methods developed so far lack the automatic classification, consuming considerable time for the classification. In this work, a novel brain tumor classification approach, namely, harmony cuckoo search-based deep belief network (HCS-DBN) has been proposed. Here, the images present in the database are segmented based on the newly developed hybrid active contour (HAC) segmentation model, which is the integration of the Bayesian fuzzy clustering (BFC) and the active contour model. The proposed HCS-DBN algorithm is trained with the features obtained from the segmented images. Finally, the classifier provides the information about the tumor class in each slice available in the database. Experimentation of the proposed HAC and the HCS-DBN algorithm is done using the MRI image available in the BRATS database, and results are observed. The simulation results prove that the proposed HAC and the HCS-DBN algorithm have an overall better performance with the values of 0.945, 0.9695 and 0.99348 for accuracy, sensitivity and specificity, respectively. Design/methodology/approach The proposed HAC segmentation approach integrates the properties of the AC model and BFC. Initially, the brain image with different modalities is subjected to segmentation with the BFC and AC models. Then, the Laplacian correction is applied to fuse the segmented outputs from each model. Finally, the proposed HAC segmentation provides the error-free segments of the brain tumor regions prevailing in the MRI image. The next step is to extract the useful features, based on scattering transform, wavelet transform and local Gabor binary pattern, from the segmented brain image. Finally, the extracted features from each segment are provided to the DBN for the training, and the HCS algorithm chooses the optimal weights for DBN training. Findings The experimentation of the proposed HAC with the HCS-DBN algorithm is analyzed with the standard BRATS database, and its performance is evaluated based on metrics such as accuracy, sensitivity and specificity. The simulation results of the proposed HAC with the HCS-DBN algorithm are compared against existing works such as k-NN, NN, multi-SVM and multi-SVNN. The results achieved by the proposed HAC with the HCS-DBN algorithm are eventually higher than the existing works with the values of 0.945, 0.9695 and 0.99348 for accuracy, sensitivity and specificity, respectively. Originality/value This work presents the brain tumor segmentation and the classification scheme by introducing the HAC-based segmentation model. The proposed HAC model combines the BFC and the active contour model through a fusion process, using the Laplacian correction probability for segmenting the slices in the database.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Guodong Wang ◽  
Qian Dong ◽  
Zhenkuan Pan ◽  
Ximei Zhao ◽  
Jinbao Yang ◽  
...  

Ultrasound images are often corrupted by multiplicative noises with Rayleigh distribution. The noises are strong and often called speckle noise, so segmentation is a hard work with this kind of noises. In this paper, we incorporate multiplicative noise removing model into active contour model for ultrasound images segmentation. To model gray level behavior of ultrasound images, the classic Rayleigh probability distribution is considered. Our model can segment the noisy ultrasound images very well. Finally, a fast method called Split-Bregman method is used for the easy implementation of segmentation. Experiments on a variety of synthetic and real ultrasound images validate the performance of our method.


Sign in / Sign up

Export Citation Format

Share Document