scholarly journals Active Contour Model for Ultrasound Images with Rayleigh Distribution

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Guodong Wang ◽  
Qian Dong ◽  
Zhenkuan Pan ◽  
Ximei Zhao ◽  
Jinbao Yang ◽  
...  

Ultrasound images are often corrupted by multiplicative noises with Rayleigh distribution. The noises are strong and often called speckle noise, so segmentation is a hard work with this kind of noises. In this paper, we incorporate multiplicative noise removing model into active contour model for ultrasound images segmentation. To model gray level behavior of ultrasound images, the classic Rayleigh probability distribution is considered. Our model can segment the noisy ultrasound images very well. Finally, a fast method called Split-Bregman method is used for the easy implementation of segmentation. Experiments on a variety of synthetic and real ultrasound images validate the performance of our method.

Author(s):  
YUNYUN YANG ◽  
YI ZHAO ◽  
BOYING WU

In this paper, we propose an efficient active contour model for multiphase image segmentation in a variational level set formulation. By incorporating the globally convex segmentation idea and the split Bregman method into the multiphase formulation of the local and global intensity fitting energy model, our new model improved the original local and global intensity fitting energy model in the following aspects. First, we propose a new energy functional using the globally convex segmentation method to guarantee fast convergence. Second, we incorporate information from the edge into the energy functional by using a non-negative edge detector function to detect boundaries more easily. Third, instead of a constant value to control the influence of the local and global intensity fitting terms, we use a weight function varying with the locations of the image to balance the weights between the local and the global fitting terms dynamically. Lastly, the special structure of our energy functional enables us to apply the split Bregman method to minimize the energy much more efficiently. We have applied our model to synthetic images and real brain MR images with promising results. Experimental results demonstrate the efficiency and superiority of our model.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Guodong Wang ◽  
Jie Xu ◽  
Qian Dong ◽  
Zhenkuan Pan

Active contour models are very popular in image segmentation. Different features such as mean gray and variance are selected for different purpose. But for image with intensity inhomogeneities, there are no features for segmentation using the active contour model. The images with intensity inhomogeneities often occurred in real world especially in medical images. To deal with the difficulties raised in image segmentation with intensity inhomogeneities, a new active contour model with higher-order diffusion method is proposed. With the addition of gradient and Laplace information, the active contour model can converge to the edge of the image even with the intensity inhomogeneities. Because of the introduction of Laplace information, the difference scheme becomes more difficult. To enhance the efficiency of the segmentation, the fast Split Bregman algorithm is designed for the segmentation implementation. The performance of our method is demonstrated through numerical experiments of some medical image segmentations with intensity inhomogeneities.


Sign in / Sign up

Export Citation Format

Share Document